- 1. 다음 중 옳지 않은 것을 모두 고르면?(정답 2 개)
 - $2 \times 2 \times 4 \times 4 \times 7 = 2^2 \times 4^2 \times 7$

 $\frac{1}{3 \times 3 \times 3 \times 3} = \frac{1}{3^4}$, ④ $\frac{1}{3^2 \times 3^4} = \frac{1}{3^6}$

- **2.** x가 자연수일 때, 4x 1 > 7를 참이 되게 하는 가장 작은 자연수 x는?

 - ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

해설 4x - 1 > 7 에서

x = 1이면 4×1-1>7 (거짓)

x = 2이면 $4 \times 2 - 1 > 7$ (거짓)

x = 3이면 $4 \times 3 - 1 > 7$ (참)

가장 작은 자연수 x가 3일 때, 부등식이 참이 되므로 만족하는

최소의 자연수는 3이다.

3. 회원들에게 저렴한 배송료 서비스를 제공하는 인터넷 슈퍼는 다음 표와 같이 배송료를 받고 있다.

	비회원	회원
연회비(원)	없음	8000
1회 주문시 배송료(원)	2000	500

비회원으로 주문하는 것 보다 유리한가?

이 인터넷 슈퍼에 회원으로 가입하고 일 년에 몇 회 이상 주문해야

③6회 ④ 7회 ⑤ 8회

주문하는 횟수를 *x* 회라 하면, 2000x > 8000 + 500x

① 4회 ② 5회

 $x > 5\frac{1}{3}$

따라서 6회 이상 이용하는 경우 회원으로 가입하는 것이 유리하

- 다음 중 식을 전개한 것 중 옳은 것은? **4.**
 - ① $(x+3)^2 = x^2 + 9$

 - $3(3x+1)^2 2(x+1)(x-3) = 7x^2 + 10x + 7$ $4\left(a + \frac{1}{3}\right)\left(a \frac{1}{3}\right) = a^2 + \frac{1}{9}$
 - $(3x+5)(2x-7) = 6x^2 + 31x 35$

- ① $(x+3)^2 = x^2 + 6x + 9$
- $3 (3x+1)^2 2(x+1)(x-3)$ $= (9x^2 + 6x + 1) 2(x^2 2x 3)$ $= (9x^2 + 6x + 1) (2x^2 4x 6)$ $= 7x^2 + 10x + 7$
- (3x+5)(2x-7) $= 6x^2 21x + 10x 35$
- $= 6x^2 11x 35$

5. x + y = 4, xy = -2 일 때, $x^2 + y^2$ 의 값은?

① 5 ② 10 ③ 15 ④ 20 ⑤ 25

 $x^{2} + y^{2} = (x + y)^{2} - 2xy$ $= 4^{2} - 2 \times (-2)$ = 16 + 4 = 20

6. 다음 중에서 그래프가 제 1사분면을 지나는 것의 개수는?

① 1개 ② 2개 ③ 3개 ④4개 ⑤ 5개

a > 0 일 때, 제1, 3사분면을 지나고,
 a < 0 일 때, 제2, 4사분면 지난다.
 ∴ ¬, ②, ②, ④, ⊕으로 4개이다.

- 7. 다음 중 순환소수를 x로 놓고 분수로 고칠 때, 식 1000x 10x가 가장 편리하게 사용되는 것은?
 - ① $0.\dot{3}\dot{1}$ ② $0.\dot{8}$ ③ $0.2\dot{5}\dot{8}$ ④ $2.5\dot{7}$ ⑤ $0.\dot{7}5\dot{6}$

해설 ③ 1000x와 10x의 소수점 아래 부분이 일치하는 0.258을 분수로

고칠 때 가장 편리한 식이 된다.

8. $2^n = x$, $3^n = y$ 일 때, $9^n \times 24^{3n} \div 3^{2n}$ 을 x, y 에 관한 식으로 옳게 나타낸 것은?

① x^5y^2 ② x^6y ③ x^6y^4 ④ x^8y^2 ⑤ x^9y^3

이 시설 $9^{n} \times 24^{3n} \div 3^{2n} = 3^{2n} \times 2^{9n} \times 3^{3n} \div 3^{2n}$ $= 3^{3n} \times 2^{9n}$ $= y^{3} \times x^{9}$ $= x^{9}y^{3}$

9. 5x - 3y - 7 = -x + 9y - 1 일 때, -5x + 2y - 1 을 y 에 관한 식으로 나타내면 ay + b 라고 한다. a + b 의 값은?

① -14 ② -10 ③ -5 ④ 10 ⑤ 14

해설

5x-3y-7 = -x+9y-1, 6x = 12y+6, x = 2y+1을 대입하면, (준식) = -5(2y+1) + 2y - 1 = -10y - 5 + 2y - 1 = -8y - 6 ∴ a+b=-14

- **10.** 2 < x < 13 이고, a < -2x + 7 < b 일 때, a + 7b 의 값은?
 - ②2 3 4 4 6 5 8 ① 0

해설 2 < x < 13의 각 변에 -2를 곱하면 -26 < -2x < -4

각 변에 7을 더하면 -19 < -2x + 7 < 3 a = -19, b = 3 이므로 a + 7b = -19 + 21 = 2 이다. 11. $\sqrt{3} \times \sqrt{5} \times (-3\sqrt{2}) \times 2\sqrt{5} = a\sqrt{b}$ 일 때, a-b 의 값은?

① -36 ② -30 ③ -24 ④ 24 ⑤ 36

 $\sqrt{3} \times \sqrt{5} \times (-3\sqrt{2}) \times 2\sqrt{5} = -30\sqrt{6}$ a = -30, b = 6

 $\therefore a - b = -36$

- **12.** (a+b)(a+b+3)+2 를 인수분해했을 때, 옳은 것은?
 - ① (a-b+1)(a-b+2)③ (a-b+1)(a+b+2)
- (a+b+1)(a+b+2)
- (3) (a+b-1)(a+b-2)
- (a-b-1)(a-b-2)

a+b=A 로 치환하면

해설

(준식) = A(A+3) + 2= $A^2 + 3A + 2$

= (A+1)(A+2)

= (a+1)(A+2)= (a+b+1)(a+b+2)

- **13.** 이차함수 $y = -\frac{2}{3}x^2$ 에 대한 다음 설명 중 옳은 것은?
 - ① y의 값의 범위는 $y \ge 0$ 이다.
 - ② 아래로 볼록하다.
 - ③ 꼭짓점은 원점이고 축은 y축이다.
 - ④ $y = \frac{3}{2}x^2$ 의 그래프와 x축에 대하여 대칭이다. ⑤ x > 0일 때, x의 값이 증가하면 y의 값도 증가한다.

- ① y의 값의 범위는 y ≤ 0 ② 위로 볼록하다.
- ④ $y = \frac{2}{3}x^2$ 의 그래프와 x축에 대하여 대칭이다.
- ⑤ x > 0일 때, x의 값이 증가하면 y의 값은 감소한다.

- 14. $n=3p^2q$ 일 때, n 의 약수의 개수를 구하여라. (단, $p\neq q\neq 3$ 인 소수)
 - ▶ 답:

개 ▷ 정답: 12 <u>개</u>

 $p \neq q \neq 3$ 인 소수이므로, n 을 소인수분해하면 $n = 3p^2q =$

 $3 \times p^2 \times q$ 이다. 따라서 약수의 개수는 $(1+1) \times (2+1) \times (1+1) = 12$ (개)이다.

15. 3 이하의 분모가 4 인 기약분수 중 가장 큰 수는 A, $-\frac{7}{3}$ 이상의 분모가 6 인 기약분수 중 가장 작은 수는 B 라 할 때, A+B 의 값은?

① $+\frac{1}{2}$ ② $+\frac{7}{12}$ ③ +0.6 ④ -1.8 ⑤ $-\frac{2}{3}$

제설 $A = \frac{a}{4}, B = \frac{b}{6} \text{ 라 하면,}$ $A = \frac{a}{4} \le \frac{12}{4} \text{ 이므로 } a = 11$ $\therefore A = +\frac{11}{4}$ $B = \frac{b}{6} \ge -\frac{14}{6} \text{ 이므로 } b = -13$ $\therefore B = -\frac{13}{6}$ $\therefore \left(+\frac{11}{4}\right) + \left(-\frac{13}{6}\right) = +\frac{7}{12}$

- 16. 재중이는 매일 저녁 8시에 동네 체육관으로 운동을 하러 간다. 갈 때는 시속 $2 \, \mathrm{km}$ 의 속력으로 걸어가고, 체육관에서 1 시간 뒤에 운동을 한 뒤, 올 때는 시속 $6 \, \mathrm{km}$ 의 속력으로 뛰어서 집에 도착하는 시각은 저녁 9시 50분이다. 재중이네 집에서 체육관까지의 거리를 구하여라.
 - ▶ 답: $\underline{\mathrm{km}}$

ightharpoonup 정답: $rac{5}{4} \underline{
m km}$

해설

재중이가 집을 나선 후 운동을 하고 집에 올 때까지 걸린 시간은

 $\frac{11}{6}$ 시간이다. 집과 체육관 사이의 거리를 $x \, \mathrm{km}$ 라 할 때, 집을 나선 후 운동을 하고 집에 올 때까지 걸린 시간을 기준으로 방정 식을 세우면 다음과 같다. $\frac{x}{2} + 1 + \frac{x}{6} = \frac{11}{6}$

3x + 6 + x = 114x = 5

 $\therefore \ x = \frac{5}{4}$

따라서, 집에서 체육관까지의 거리는 $\frac{5}{4}$ km 이다.

17. 두 점 A(a-2, 4a-1), B(3-2b, b-1)이 각각 x 축, y 축 위에 있을 때, $\frac{b}{a}$ 의 값은?

① $\frac{1}{2}$ ② $\frac{3}{4}$ ③ $\frac{8}{3}$ ④ 6

⑤ 5

A(a-2, 4a-1) 가 x 축 위에 있을 때, y 좌표가 0 이므로 4a-1=0 $\therefore a=\frac{1}{4}$ B(3-2b, b-1) 가 y 축 위에 있을 때, x 좌표가 0 이므로 3-2b=0 $\therefore b=\frac{3}{2}$

따라서 $\frac{b}{a} = b \times \frac{1}{a} = \frac{3}{2} \times 4 = 6$

18. x의 값이 $-9 \le x \le -4$ 일 때, $y = \frac{a}{x}(a < 0)$ 의 y의 범위가 $4 \le y \le b$ 이다. a - b의 값을 구하여라.

▶ 답:

▷ 정답: -45

 $y = \frac{a}{x}$ 의 그래프는 a < 0이므로 x의 값이 증가하면 y의 값도 증가한다. 따라서, x = -9일 때, y = 4이고, x = -4일 때, y = b이다. $y = \frac{a}{x}$ 에 x = -9, y = 4를 대입하면 $4 = -\frac{a}{9}$, a = -36 $y = -\frac{36}{x}$ 에 x = -4, y = b를 대입하면 $b = -\frac{36}{-4} = 9$ $\therefore a - b = -36 - 9 = -45$ **19.** 분수 $\frac{a}{150}$ 를 소수로 나타내면 유한소수가 되고, 기약분수로 나타내면 $\frac{3}{b}$ 이다. 이때, a+b의 값은? (단,10 < a < 20)

① 34 ② 43 ③ 48 ④ 55 ⑤ 59

 $a = 3^2 \times 2 = 18, b = 25$

 $\therefore a + b = 18 + 25 = 43$

20. 두 실수 a, b 에 대하여 a-b<0, ab<0 일 때, $\sqrt{a^2}+\sqrt{b^2}-\sqrt{(-a)^2}+\sqrt{(-b)^2}$ 을 간단히 한 것은?

① 0 ② 2a ③ a-b ④ 2b ⑤ a+b

해설

ab < 0 이면 a와 b의 부호가 다르다. a - b < 0 이면 a < b 이므로 a < 0, b > 0 이다. a < 0 이므로 $\sqrt{a^2} = -a$, b > 0 이므로 $\sqrt{b^2} = b$ a < 0 이므로 $\sqrt{(-a)^2} = \sqrt{a^2} = -a$ b > 0 이므로 $\sqrt{(-b)^2} = \sqrt{b^2} = b$ 따라서 $\sqrt{a^2} + \sqrt{b^2} - \sqrt{(-a)^2} + \sqrt{(-b)^2}$ = -a + b - (-a) + b= 2b **21.** 2x - y = 3 일 때, $\sqrt{2x + y}$ 가 자연수가 되게 만드는 가장 작은 두 자리 자연수 x 는?

① 10 ② 13 ③ 16 ④ 19 ⑤ 22

 $2x - y = 3 \Rightarrow y = 2x - 3$ $\sqrt{2x + y} = \sqrt{2x + 2x - 3} = \sqrt{4x - 3}$ x는 최소한 가장 작은 두자리 수인 10 이상이어야 하므로, 근호 안의 제곱수는 7^2 이상이 되어야 한다. $(\sqrt{4 \times 10 - 3} = \sqrt{37} > 7^2)$ $\therefore \sqrt{4x - 3} = 7$ 일 때, x = 13 이므로 성립한다.

 $\therefore x = 13$

해설

 ${f 22}$. 부등식 $4 \le 3x-2 < 8$ 을 만족하는 두 자연수가 이차방정식 $x^2-ax+b=$ 0의 근일 때, $\frac{a+b}{ab}$ 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{11}{30}$

부등식 $4 \le 3x - 2 < 8$ 을 풀면 다음과 같다. $6 \le 3x < 10$

 $2 \le x < \frac{10}{3}$

∴ x = 2, 3 이 두 자연수를 근으로 가지므로 이를 이차방정식에 대입하여

풀면 a = 5, b = 6

 $\therefore \ \frac{a+b}{ab} = \frac{11}{30}$

23. 다음 조건을 만족하는 유리수 a,b 에 대하여 옳은 것은?

 $\bigcirc ab < 0$ $\bigcirc |a| + |b| > 6$

- (4) |a-b| > 6 (5) a-b > 6
- ① a > -1 ② -a > -b ③ |a| |b| > 0

해설

① 알 수 없다.

- ② 알 수 없다.
- ③ 알 수 없다.
- ④ a,b 의 부호가 다르므로 a-b 의 절댓값은 6 보다 크다. ⑤ 알 수 없다.

24. 학생 20 명이 수학 시험을 본 결과 10 점이 a 명, 9 점이 b 명, 8 점이 c 명이고 나머지는 모두 7 점이었다. 이때, 전체 학생의 수학 점수의 평균을 a,b,c를 사용하여 간단히 나타냈을 때 각 계수의 총합(상수항 포함)을 소수로 나타내어라.

답:

➢ 정답: 7.3

해설

(a명의 총점) = 10 × a = 10a (b명의 총점) = 9 × b = 9b (c명의 총점) = 8 × c = 8c (나머지 학생의 총점) = 7(20 - a - b - c) (평균) = $\frac{10a + 9b + 8c + 7(20 - a - b - c)}{20}$ = $\frac{3a + 2b + c + 140}{20}$ ∴ $\frac{3 + 2 + 1 + 140}{20} = \frac{146}{20} = 7.3$ **25.** 자연수 n 의 일의 자리숫자를 R(n)이라고 할 때, $R(2^{97}) \times R(3^{98})$ 을 구하여라.

▶ 답:

▷ 정답: 18

해설

2, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, $2^5 = 32$, \cdots 이므로 2 의 거듭제곱의 일의 자리 숫자는 2, 4, 8, 6 이 반복된다.

 $97 \div 4 = 24 \cdots 1$ 이므로 $R(2^{97}) = 2$ 3, $3^2 = 9$, $3^3 = 27$, $3^4 = 81$, $3^5 = 243$, \cdots 이므로

3 의 거듭제곱의 일의 자리 숫자는 3, 9, 7, 1 이 반복된다.

98÷4=24···2 이므로 $R(3^{98})=9$ ∴ $2\times 9=18$

26. 연립방정식 4(x-2) = 2x + 2y - 4 = 3x - 3y + 18 의 해는?

①
$$x = 6, y = 8$$

③ $x = -6, y = 8$

$$x = 8, \ y = 6$$

$$4 \quad x = 6, \ y = -8$$

$$\begin{cases} 4(x-2) = 2x + 2y - 4 \\ 2x + 2y - 4 = 3x - 3y + 18 \end{cases} \Rightarrow \begin{cases} x - y = 2 & \cdots & \text{①} \\ -x + 5y = 22 & \cdots & \text{②} \end{cases}$$
① + ② 를 하면 $4y = 24$, $y = 6$
 $y = 6$ 을 ② 에 대입하면 $-x + 30 = 22$, $x = 8$
 $\therefore x = 8$, $y = 6$

27. 예지와 재희가 가위바위보 놀이를 하여 이기면 3 점, 비기면 1 점을 얻고, 지면 2 점을 잃는 방식으로 점수를 매겼다. 총 6 번의 가위바위보 놀이를 하여 예지는 6 점, 재희는 1 점을 얻었을 때, 예지가 이긴 횟수와 재희가 이긴 횟수의 합을 구하여라.

<u>합</u>: <u>회</u>

정답: 5 회

에지가 이긴 횟수를 *x* 회, 비긴 횟수를 *y* 회, 진 횟수를 *z* 회라고

놓으면, 재희가 이긴 횟수는 z회, 비긴 횟수는 y회, 진 횟수는 x회가 된다.

x + y + z = 6

-2x + y + 3z = 1 세 식을 연립하여 풀면,

3x + y - 2z = 6-2x + y + 3z = 1

x = 3, y = 1, z = 2따라서 예지가 이긴 횟수는 3 회, 재희가 이긴 횟수는 2 회가

되어 그 합은 5회이다.

28. x에 대한 함수 f(x)가 임의의 x,y에 대하여 f(x)f(y)=f(x+y)+f(x-y), f(1)=1을 만족할 때, <math>2f(0)+f(2)의 값은?

① 0 ② 1 ③ 2 ④3 ⑤ 4

해설 f(1)f(0) = f(1+0) + f(1-0) $f(1) = 1 이므로 f(0) = 2 \times 1 = 2$ f(1)f(1) = f(1+1) + f(1-1) 1 = f(2) + f(0) f(2) = 1 - 2 = -1 $2f(0) + f(2) = 2 \times 2 - 1 = 3$

29. 직선 $\frac{x}{5} + \frac{y}{3} = 1$ 과 직선 $\frac{a}{5}x + \frac{b}{3}y = 1$ 이 평행하고 점 (a, b)는 직선 $\frac{x}{5} + \frac{y}{3} = 1$ 위의 점일 때, a + b의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{15}{4}$

평행일 조건 : $\frac{\left(\frac{1}{5}\right)}{\left(\frac{a}{5}\right)} = \frac{\left(\frac{1}{3}\right)}{\left(\frac{b}{3}\right)} \neq \frac{1}{1}$

 $\frac{1}{a} = \frac{1}{b}, a = b$ $\frac{x}{5} + \frac{y}{3} = 1 \text{ 에 점 } (a, b) \stackrel{?}{=} \text{ 대입하면}$ $\frac{a}{5} + \frac{b}{3} = 1$ $\frac{3a + 5b}{15} = 1, 3a + 5b = 15$ $a = b \circ \Box \Box \Box \exists 3a + 5a = 15 \text{ 에서 } 8a = 15$ $\therefore a = b = \frac{15}{8}, a + b = \frac{15}{4}$

30. 이차함수 $f(x)=x^2-3$ 에 대하여 $f^1(x)=f(x),\ f^{n+1}=f(f^n(x))$ 라 할 때, $f^{1111}(1)$ 의 값을 구하여라.

▶ 답:

▷ 정답: -2

해설

 $f^{1}(1) = -2$ $f^{2}(1) = f(-2) = 1$ $f^{3}(1) = f(1) = -2$ $f^{4}(1) = f(-2) = 1$ \vdots $\therefore f^{1111}(1) = -2$