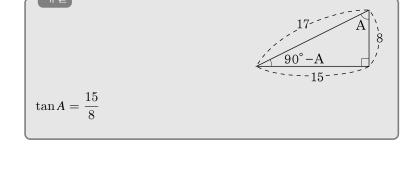


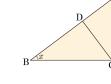
다음 중 그림의 $\triangle ABC$ 에서 \overline{BC} 의 **2.** 길이를 나타내는 것은?

Н

- ① $c \sin B + b \sin C$
- ② $c \sin B + b \cos C$
- $\Im c \tan B + b \tan C$


 $\triangle ABH$ 에서 $\cos B = \frac{\overline{BH}}{c}, \overline{BH} = c \cos B$ \triangle AHC 에서 $\cos \mathbf{C} = \frac{\overline{\mathbf{CH}}}{b}, \overline{\mathbf{CH}} = b \cos \mathbf{C}$

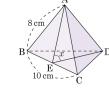
따라서 $\overline{\mathrm{BC}} = \overline{\mathrm{BH}} + \overline{\mathrm{CH}} = c \cos \mathrm{B} + b \cos \mathrm{C}$ 이다.


3. $\sin(90\,^{\circ}-A)=\frac{8}{17}$ 일 때, $\tan A$ 의 값을 구하여라. (단, $(0\,^{\circ}< A<90\,^{\circ})$

답:

ightharpoonup 정답: $rac{15}{8}$

4. 다음 그림에서 $\angle {
m C}=90^{\circ}$, $\overline{
m AB}m \pm \overline{
m CD}$ 이고 $\angle {
m B}=x$ 일 때, 다음 중 옳지 <u>않은</u> 것은?


$$x = \frac{AB}{AD}$$

$$\cos x = \frac{1}{4}$$

$$\cos x = \frac{1}{4}$$

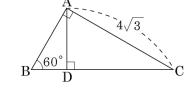
①
$$\sin x = \frac{\overline{AC}}{\frac{\overline{AB}}{\overline{AC}}}$$
 ② $\cos x = \frac{\overline{CD}}{\frac{\overline{AC}}{\overline{AC}}}$ ③ $\tan x = \frac{\overline{CD}}{\overline{AD}}$
④ $\sin x = \frac{\overline{AD}}{\overline{AC}}$ ③ $\cos x = \frac{\overline{BD}}{\overline{BC}}$

5. 다음 그림의 삼각뿔은 옆면이 모두 합동인 이등변삼각형이고 밑면은 한 변의 길이가 10 인 정삼각형이다. 모서리 BC 의 중점을 E 라 하고, $\angle AED = x$ 일 때, $\tan x$ 의 값은?

- ① $\frac{\sqrt{23}}{\frac{5}{5}}$ ② $\frac{2\sqrt{23}}{\frac{5}{5}}$ ③ $\frac{3\sqrt{23}}{\frac{5}{5}}$ ④ $\frac{4\sqrt{23}}{5}$ ⑤ $\sqrt{23}$

 $\overline{AE} = \sqrt{\overline{AB^2} - \overline{BE^2}} = \sqrt{64 - 25} = \sqrt{39}$ 점 A 에서 $\overline{\mathrm{ED}}$ 에 내린 수선의 발을 H 라 하면

$$\overline{EH} = \frac{\sqrt{3}}{2} \times 10 \times \frac{1}{3} = \frac{5\sqrt{3}}{3}$$

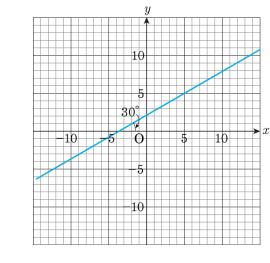

$$\overline{AH} = \sqrt{39 - \frac{25}{3}} = \sqrt{\frac{92}{3}} = \frac{1}{3}$$

$$\overline{EH} = \frac{\sqrt{3}}{2} \times 10 \times \frac{1}{3} = \frac{5\sqrt{3}}{3}$$

$$\overline{AH} = \sqrt{39 - \frac{25}{3}} = \sqrt{\frac{92}{3}} = \frac{2\sqrt{69}}{3}$$

$$\therefore \tan x = \frac{2\sqrt{69}}{5\sqrt{3}} = \frac{2\sqrt{23}}{5}$$

6. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC에서 $\overline{AC}=4\sqrt{3},\ \angle B=60^\circ$ 일 때, \overline{BD} 의 길이를 구하여라.



 답:

 ▷ 정답:
 2

 $\sin 60^\circ = \frac{4\sqrt{3}}{\overline{BC}} = \frac{\sqrt{3}}{2}$ 이므로 $\overline{BC} = 8$ 이다. $\cos 60^\circ = \frac{\overline{AB}}{\overline{CB}} = \frac{\overline{AB}}{8} = \frac{1}{2} \circ \Box \Box \Xi \ \overline{AB} = 4 \circ \Box \Box$. $\cos 60^\circ = \frac{1}{2} = \frac{\overline{BD}}{4} \circ \Box \Box \Xi \ \overline{BD} = 2 \circ \Box \Box$.

다음 그림과 같이 y절편이 2이고, 직선과 x축이 이루는 각의 크기가 7. 30°인 직선의 방정식을 구한 것으로 옳은 것은?

- ① y = x + 2 ② $y = \frac{\sqrt{3}}{3}x + 2$ ③ y = 2x + 1④ $y = \sqrt{3}x + 2$ ⑤ $y = \frac{\sqrt{3}}{2}x + 1$

해설

기울기 = $\tan 30^\circ = \frac{\sqrt{3}}{3}$ 이고 y절편이 2이므로 $y = \frac{\sqrt{3}}{3}x + 2$ 이다.

- 다음 중 옳지 <u>않은</u> 것을 골라라. (단, $0^{\circ} \le A \le 90^{\circ}$) 8.
 - © A 값이 커지면 $\cos A$ 의 값은 작아진다.

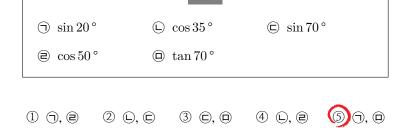
⊙ A 값이 커지면 sinA 의 값도 커진다.

- ⓒ A 값이 커지면 tan A 의 값도 커진다. $extstyle \sin A$ 의 최솟값은 0, 최댓값은 1 이다.
- \bigcirc $\tan A$ 의 최솟값은 0 , 최댓값은 1 이다.

▷ 정답: □

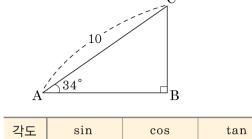
▶ 답:

⑤ $\tan A$ 의 최솟값은 $\tan 0^\circ = 0$ 이지만 $\tan 90^\circ$ 의 값은 정할 수 없으므로 tan A 의 최댓값은 알 수 없다.


- 다음 x 의 값 중에서 가장 큰 것은? (단, 0° < x < 90° 이다.) 9.

- ① $\tan x = \sqrt{3}$ ② $\sin(x+10^\circ) = \frac{1}{2}$ ③ $\cos(2x-10^\circ) = \frac{\sqrt{3}}{2}$ ④ $\tan(2x+30^\circ) = 1$

- ① $x = 60^{\circ}$ ② $x = 20^{\circ}$ ③ $x = 20^{\circ}$ ④ $x = \frac{15}{2}^{\circ}$ ⑤ $x = 45^{\circ}$


10. 삼각비의 표를 보고, 보기에서 가장 작은 값과 가장 큰 값을 차례대로 짝지은 것을 구하여라.

각도	sin	cos	tan
10°	0.1736	0.9848	0.1763
$20\degree$	0.3420	0.9397	0.3640
$35\degree$	0.5736	0.8192	0.7002
$45\degree$	0.7071	0.7071	1.0000
50°	0.7660	0.6428	1.1918
70°	0.9397	0.3420	2.7475
89°	0.9998	0.0175	57.2900

해설
①sin 20° = 0.3420
②cos 35° = 0.8192
②sin 70° = 0.9397
②cos 50° = 0.6428
②tan 70° = 2.7475
이므로 가장 작은 값은 ③sin 20°, 가장 큰 값은 @tan 70° = 2.7475

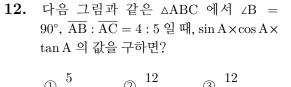
11. 다음 그림의 $\triangle ABC$ 에서 삼각비의 표를 보고, $\triangle ABC$ 의 둘레의 길이를 구하면?

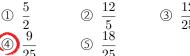
1			
54°	0.8090	0.5878	1.3764
55°	0.8192	0.5736	1.4281
56°	0.8290	0.5592	1.4826

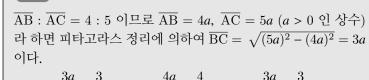
4 23.882

① 5.592

⑤ 29.107

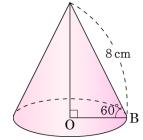

③ 13.882


② 8.29


 $\overline{AB} = 10 \times \sin 56^{\circ} = 10 \times 0.829 = 8.29$

 $\overline{BC} = 10 \times \cos 56^{\circ} = 10 \times 0.5592 = 5.592$ 따라서 $\triangle ABC$ 의 둘레의 길이는 10 + 8.29 + 5.592 = 23.882

이다.



$$\sin A = \frac{3a}{5a} = \frac{3}{5}, \cos A = \frac{4a}{5a} = \frac{4}{5}, \tan A = \frac{3a}{4a} = \frac{3}{4}$$

$$\therefore \sin A \times \cos A \times \tan A = \frac{3}{5} \times \frac{4}{5} \times \frac{3}{5} = \frac{9}{5}$$

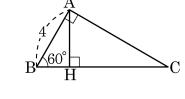
$$\therefore \sin A \times \cos A \times \tan A = \frac{3}{5} \times \frac{4}{5} \times \frac{3}{4} = \frac{9}{25}$$


13. 다음 그림과 같이 모선의 길이가 8cm 이고 밑면의 반지름의 길이가 4cm 인 원뿔이 있 다. 이 원뿔의 높이는?

- \bigcirc 4 cm
- $\bigcirc 4\sqrt{2}\,\mathrm{cm}$ $\bigcirc 4\sqrt{6}\,\mathrm{cm}$
- $34\sqrt{3}$ cm
- $4\sqrt{5}$ cm

 $\overline{\mathrm{OA}} = 8 \times \sin 60^{\circ} = 8 \times \frac{\sqrt{3}}{2} = 4\sqrt{3} (\,\mathrm{cm})$

14. 영아의 학교는 버스정류장에서 $200\mathrm{m}$ 떨어져 있고 버스정류장과 학교 가 이루는 각도는 42° 이다. 학교는 버스정류장에서 수평거리로 몇 m 거리에 있는지 구하여라. (단, $\sin 48^\circ = 0.7431$, $\cos 48^\circ = 0.6691$)


 $\underline{\mathbf{m}}$

 답:

 ▷ 정답:
 148.62 m

 $x = 200 \sin 48^{\circ} = 200 \times 0.7431 = 148.62 \text{ (m)}$

 ${f 15}$. 다음 그림과 같은 ΔABC 에서 $\overline{AB}=4$ 이고, $\angle B=60^\circ$ 일 때, \overline{BC} 의 길이는?

- ① $2(1 + \sqrt{3})$ ② 8 ④ $3(1 + 2\sqrt{3})$ ⑤ $3(2\sqrt{3} 1)$
- $34\sqrt{5}$

 $\overline{BC} = \overline{BH} + \overline{HC}$

 $\overline{BH} = 4\cos 60^{\circ} = 4 \times \frac{1}{2} = 2$

 $\overline{AH} = 4\sin 60^\circ = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$

 $\overline{HC} = 2\sqrt{3}\tan 60^{\circ} = 2\sqrt{3} \times \sqrt{3} = 6$ $\therefore \overline{BC} = \overline{BH} + \overline{HC} = 2 + 6 = 8$

16. 다음 그림에서 $\frac{\tan B}{\tan A}$ 의 값을 구하여라.

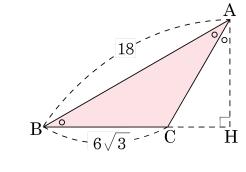
A 5 cm H - 9 cm - - - E

▶ 답:

ightharpoonup 정답: $rac{5}{9}$

 $\tan B = \frac{\overline{CH}}{9}, \ \tan A = \frac{\overline{CH}}{5}$ $\therefore \ \tan B \div \tan A = \frac{\overline{CH}}{\frac{9}{9}} \div \frac{\overline{CH}}{\frac{5}{5}}$ $= \frac{\overline{CH}}{9} \times \frac{5}{\overline{CH}} = \frac{5}{9}$

17. 다음 그림의 삼각형 ABC 에서 $\overline{\mathrm{AB}} =$ 10cm, $\angle A = 30$ °, $\angle CBH = 60$ ° 이다. $\overline{\mathrm{CH}}$ 의 길이를 구하여라.


 $\underline{\mathrm{cm}}$

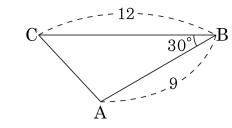
> 정답: 5√3<u>cm</u>

▶ 답:

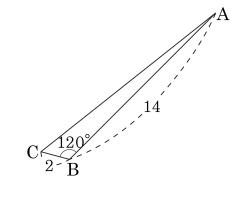
 $\overline{\mathrm{CH}} = 10\sin 60^{\circ} = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3}(\mathrm{cm})$

 $\overline{AB} = \overline{BC} = 10(cm)$

- ① $3\sqrt{3}$ ④ $81\sqrt{3}$
- ② $9\sqrt{3}$ ⑤ $243\sqrt{3}$
- $\bigcirc{3}27\sqrt{3}$


해설

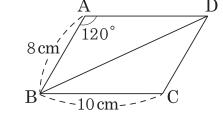
$$\angle A + \angle B = 90$$
°에서 $\angle ABC = x$ 라 하면 $3x = 90$ ° $\therefore x = 30$ ° ($\triangle ABC$ 의 넓이)


$$\begin{bmatrix} -2 & 10 & 0 & \sqrt{3} & \sin \theta \\ 1 & -1 & 1 \end{bmatrix}$$

$$= \frac{1}{2} \times 18 \times 6\sqrt{3} \times \sin 30^{\circ}$$
$$= \frac{1}{2} \times 18 \times 6\sqrt{3} \times \frac{1}{2} = 27\sqrt{3}$$

19. 다음 그림과 같은 두 삼각형 ABC 의 넓이를 바르게 연결한 것은?

(2)

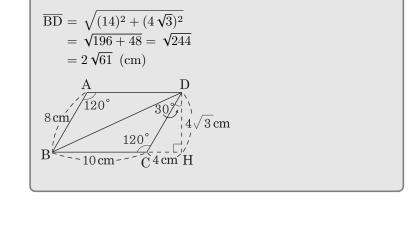


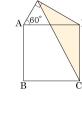
- $\textcircled{4}(1)27, (2)7\sqrt{3}$ $\textcircled{5}(1)28, (2)7\sqrt{3}$
- ① $(1)25, (2)6\sqrt{3}$ ② $(1)25, (2)7\sqrt{3}$ ③ $(1)26, (2)6\sqrt{3}$

(2)
$$\frac{1}{2} \times 14 \times 2 \times \sin(180^{\circ})$$

(1)
$$\frac{1}{2} \times 9 \times 12 \times \sin 30^{\circ}$$

 $= \frac{1}{2} \times 9 \times 12 \times \frac{1}{2} = 27$
(2) $\frac{1}{2} \times 14 \times 2 \times \sin(180^{\circ} - 120^{\circ})$
 $= \frac{1}{2} \times 14 \times 2 \times \sin 60^{\circ}$
 $= \frac{1}{2} \times 14 \times 2 \times \frac{\sqrt{3}}{2} = 7\sqrt{3}$


20. 다음 그림과 같은 평행사변형에서 $\angle A=120^\circ, \ \overline{AB}=8 \mathrm{cm}, \ \overline{BC}=10 \mathrm{cm}$ 일 때, 대각선 BD 의 길이를 구하여라.

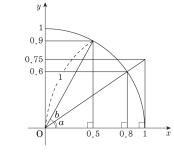

 $\underline{\mathrm{cm}}$

 > 정답:
 2√61 cm

▶ 답:

21. 다음 그림에서 $\square ABCD$ 는 정사각형이고, $\angle EAD=60^\circ$ 이다. 색칠한 부분의 넓이가 $24 \, \mathrm{cm}^2$ 일 때, 정사각형의 한 변의 길이를 구하여라.

▶ 답: ▷ 정답: 8cm $\underline{\mathrm{cm}}$

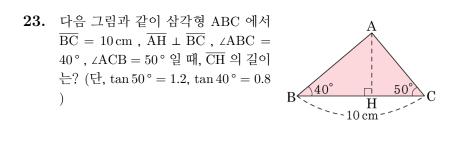

해설

 $\angle EDA = 30^{\circ}$ $\overline{AD} = \overline{DC} = x$ 라 하면

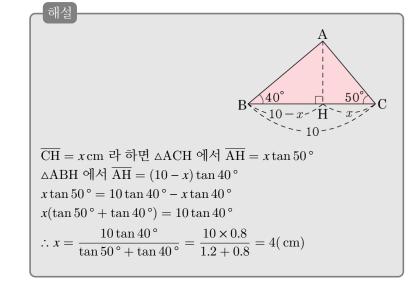
 $\overline{ED} = \overline{AD} \times \cos 30^{\circ} = \frac{\sqrt{3}}{2}x$ $\overline{AE} = \overline{AD} \times \cos 60^{\circ} = \frac{1}{2}x$

(색칠한 부분의 넓이)= $\frac{1}{2} \times \frac{\sqrt{3}}{2} x^2 \times \sin(120^\circ) = 24$ $\frac{3}{8} x^2 = 24$ $\therefore x = 8 \text{ (cm)}$

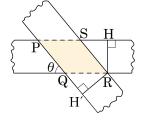
22. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 다음 중 옳은 것은?

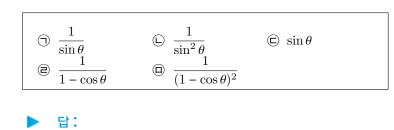


- ① $\sin a = 0.8$
- $\cos a = 0.6$


해설

① $\sin a = 0.6$


- $\cos a = 0.8$
- $\Im \cos b = 0.5$

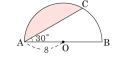


① 2 cm ② 4 cm ③ 5 cm ④ 6 cm ⑤ 7 cm

24. 다음 그림과 같이 폭이 1로 일정한 두 종이 테이프가 θ 의 각을 이루며 겹쳐 있을 때, □PQRS의 넓이를 구하여라.

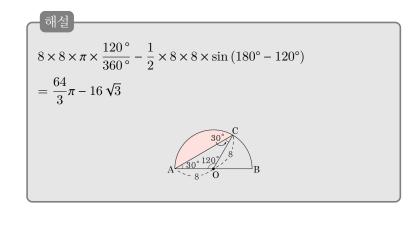
▷ 정답: つ

해설


점 R 에서 \overrightarrow{PS} , \overrightarrow{PQ} 에 내린 수선의 발을 각각 H, H'이라 하면 $\triangle QRH'$ 에서 $\angle RQH'=\theta$ 이므로

 $\overline{\mathrm{QR}} = \frac{\overline{\mathrm{RH'}}}{\sin \theta} = \frac{1}{\sin \theta}$ 이다. 또, $\triangle \mathrm{SRH}$ 에서 $\angle \mathrm{RSH} = \theta$ 이므로 $\overline{\mathrm{SR}} = \frac{\overline{\mathrm{RH}}}{\sin \theta} = \frac{1}{\sin \theta}$

$$\angle RSH = \theta$$
이므로 $\overline{SR} = \frac{\overline{RH}}{\sin \theta} = \frac{1}{\sin \theta}$


$$\therefore \Box PQRS = \overline{QR} \times \overline{SR} \times \sin \theta$$
$$= \frac{1}{\sin \theta} \times \frac{1}{\sin \theta} \times \sin \theta = \frac{1}{\sin \theta}$$

25. 그림과 같이 반지름의 길이가 8 인 반원에서 $\angle BAC = 30^{\circ}$ 일 때, 색칠한 부분의 넓이를 구하여라.

▶ 답:

ightharpoonup 정답: $\frac{64}{3}\pi - 16\sqrt{3}$

