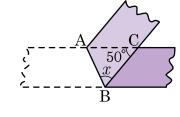

1. 다음 그림과 같이 $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC에서 $\angle A$ 의 이등 분선과 $\overline{\mathrm{BC}}$ 의 교점을 D라 하자. $\overline{\mathrm{DC}}=11\mathrm{cm},\ \angle\mathrm{BAD}=33\,^{\circ}$ 일 때, x + y의 값은?

① 48 ② 58

368

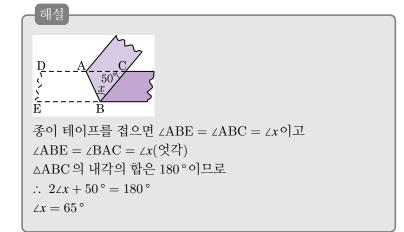
4 78

⑤ 88

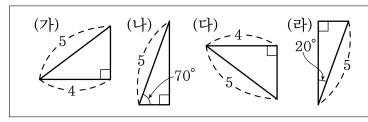

이등변삼각형에서 꼭지각의 이등분선은 밑변을 수직이등분하

므로 $\overline{\mathrm{BD}} = \overline{\mathrm{DC}} = 11\mathrm{cm}$ ΔABC는 이등변삼각형이므로

 $y = \frac{1}{2}(180 \, ^{\circ} - 66 \, ^{\circ}) = 57 \, ^{\circ}$

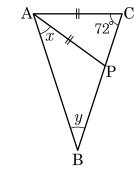

 $\therefore \ x + y = 11 + 57 = 68$

2. 다음 그림과 같이 폭이 일정한 종이 테이프를 접었다. $\angle ACB = 50^{\circ}$ 일 때, $\angle x$ 의 크기는?



⑤65°

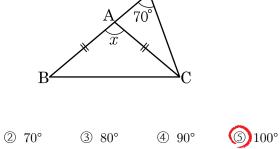
① 45° ② 50° ③ 55° ④ 60°


다음 중 서로 합동인 것끼리 바르게 짝지어진 것은? (정답 2 개) 3.

- ③(나)와 (라) ②(가)와 (다) ① (가)와(라) ④ (가)와(나)
- ⑤ (나)와(다)

(가)와 (다) ⇒ RHS 합동 (나)와 (라) ⇒ RHA 합동

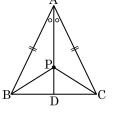
4. 다음 그림에서 $\triangle ABC$ 는 $\overline{BA}=\overline{BC}$ 인 이등변삼각형이다. $\overline{AC}=\overline{AP}$ 이고 $\angle C = 72^{\circ}$ 일 때, $\angle x + \angle y$ 의 값은?



① 64° ② 66° ③ 68° ④ 70°

해설 ΔACP 는 $\overline{AC}=\overline{AP}$ 인 이등변삼각형이므로

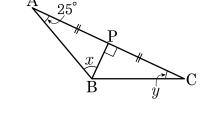
 $\angle \mathrm{APC} = 72^\circ$ $\therefore \angle x + \angle y = 72^{\circ}$


5. 그림에서 $\overline{AB}=\overline{AC},\overline{BD}=\overline{BC}$ 이고 $\angle D=70^\circ$ 일 때, $\angle x$ 의 크기를 구하여라.

① 60° ② 70° ③ 80° ④ 90° ⑤1

 $\angle DCB = 70^{\circ}, \angle B = 40^{\circ}, \angle x = 100^{\circ}$

6. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 $\angle A$ 의 이등분선과 \overline{BC} 와의 교점을 D라 하자. \overline{AD} 위의 한 점 P에 대하여 다음 중 옳은 것은?


① $\overline{AB} = \overline{BC}$ ③ $\overline{BP} = \overline{BD}$ $\bigcirc \overline{AC} = \overline{BC}$

 $\bigcirc \bigcirc \triangle PDB \equiv \triangle PDC$

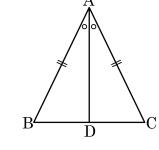
BD = CD 이므로 SAS 합동이다.

⑤ \overline{PD} 는 공통, $\angle PDB = \angle PDC = 90$ °,

7. 다음 그림과 같이 $\overline{AB} = \overline{BC}$ 인 이등변삼각형 ABC가 있을 때, $\angle x + \angle y$ 의 크기는?

① 70° ② 80°

③90°


4 100° 5 110°

 $\angle x$ 는 $\angle B$ 를 이등분한 각이므로 $\angle CBP$ 와 같다.

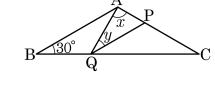
해설

 \triangle CBP에서 $\angle x$ 와 $\angle y$ 의 합은 180 °에서 \angle BPC를 뺀 것과 같다. $\therefore \ \angle x + \angle y = 180^{\circ} - 90^{\circ} = 90^{\circ}$

8. 다음 그림과 같이 $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC에서 $\angle A$ 의 이등 분선이 \overline{BC} 와 만나는 점 을 D라 할 때, 다음 중 옳지 <u>않은</u> 것을 모두 고르면?

① $\angle B = \angle C$

 \bigcirc $\angle ADB = \angle ADC$


 $\textcircled{4} \ \overline{\mathrm{BD}} = \overline{\mathrm{CD}}$

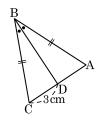
 $\triangle ABC는 \overline{AB} = \overline{AC}$ 인 이등변삼각형이므로

 $\angle \mathbf{B} = \angle \mathbf{C}$ 이등변삼각형의 꼭지각의 이등분선은 밑변을 수직이등분하므로

 $\overline{\mathrm{BD}} = \overline{\mathrm{CD}}, \, \overline{\mathrm{AD}} \bot \overline{\mathrm{BC}}, \, \angle \mathrm{ADB} = \angle \mathrm{ADC} = 90\,^{\circ}$

다음 그림에서 $\triangle ABC$ 는 $\overline{AB}=\overline{AC}$ 인 이등변삼각형에 \overline{AB} 와 평행인 9. 선분 \overline{PQ} 를 그었을 때, $\angle x + \angle y$ 의 크기는?

① 90°


② 100°

③ 110°

⑤ 130°

 $\angle y = \angle \mathrm{BAQ}()$ 학과 $\angle x + \angle y = \angle \mathrm{BAC} = 180^\circ - 2 \times 30^\circ = 120^\circ$ 이다.

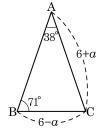
10. 다음 그림과 같은 $\triangle ABC$ 에서 \overline{CD} 와 길이가 같은 것은?

 \bigcirc \overline{AB}

 \bigcirc \overline{BC}

 $\overline{\text{3}}\overline{\text{AD}}$

4 \overline{BD}


 $\odot \overline{AC}$

이등변삼각형에서 꼭지각을 이등분하는 선분은 밑변을 수직이

해설

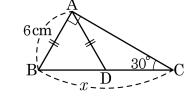
등분하므로 $\overline{\mathrm{CD}} = \overline{\mathrm{AD}}$

11. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle A=38^{\circ}$, $\angle B=$ 71 ° 이고, $\overline{AC}=6+a$, $\overline{BC}=6-a$ 일 때, \overline{AB} 를 a 에 관한 식으로 나타내면?

① 6 – a ② 6

 $\bigcirc 6 + a$

④ 2a

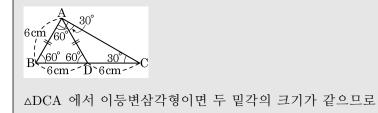

⑤ 12

△ABC 에서 $\angle C = 180^{\circ} - (38^{\circ} + 71^{\circ}) = 71^{\circ}$

해설

따라서 $\triangle ABC$ 는 이등변삼각형 $\therefore \overline{\mathrm{AB}} = \overline{\mathrm{AC}} = 6 + a$

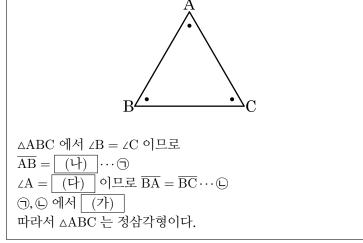
 ${f 12}$. 다음 직각삼각형 ABC 에서 $\overline{
m AD}=\overline{
m CD}$, $\overline{
m AB}=6{
m cm}$ 이고, $\angle{
m ACB}=30^\circ$ 일 때, x 의 길이는?



① 4cm \bigcirc 6cm

 $\ \, 3\ \, 8\mathrm{cm}$

4 $10\mathrm{cm}$


⑤ 12cm

 $\angle DCA = \angle DAC = 30^{\circ}$ 이다. $\angle ADB = 60^{\circ}$, $\angle DAB = 60^{\circ}$, $\angle ABD = 60^{\circ}$ 이므로 $\triangle ABD$ 는 정삼각형이다.

따라서 $\overline{AB}=\overline{BD}=\overline{AD}=6\mathrm{cm}$ 이므로 $\overline{DC}=6\mathrm{cm}$ 이다. 따라 서 $x = 12 \,\mathrm{cm}$ 이다.

13. 다음은 「세 내각의 크기가 같은 삼각형은 정삼각형이다.」를 보이는 과정이다.

(개 ~ (대에 들어갈 것을 차례로 쓴 것은?

① $\overline{AB} = \overline{BC} = \overline{CA}$, \overline{AC} , $\angle B$

 \bigcirc $\overline{AB} = \overline{BC} = \overline{CA}$, \overline{AC} , $\angle C$

③ $\angle A = \angle B = \angle C$, \overline{BC} , $\angle A$ ④ $\angle A = \angle B = \angle C$, \overline{BC} , $\angle C$

 \bigcirc $\angle A = \angle B = \angle C$, \overline{AC} , $\angle C$

 $\triangle ABC$ 에서 $\angle B = \angle C$ 이므로

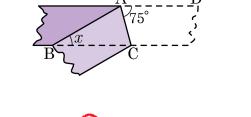
 $\overline{AB} = (\overline{AC}) \cdots \bigcirc$ $\angle A = (\angle C)$ 이므로 $\overline{BA} = \overline{BC} \cdots \bigcirc$ \bigcirc , \bigcirc 에서 $(\overline{AB} = \overline{BC} = \overline{CA})$ 따라서 $\triangle ABC$ 는 정삼각형이다. 14. 다음 그림과 같이 $\overline{AB}=\overline{BC}$ 인 이등변삼각형 ABC 의 꼭짓점 A, C 에서 대변의 중점과의 교점을 각각 D, E 라고 할 때, $\overline{AE}=\overline{CD}$ 임을 증명하는 과정이다. $⑦\sim ©$ 에 들어갈 말을 알맞게 쓴 것을 고르면?

[가정] $\overline{AB} = \overline{BC}$, 점 D, E 는 \overline{AB} 와 \overline{BC} 의 중점 [결론] $\overline{AE} = \overline{CD}$ [증명] $\triangle ADC$ 와 $\triangle CEA$ 에서 (②))는 공통 ··· ① $\angle DAC = \angle ECA \cdots \bigcirc$ 또 $\overline{AD} = \frac{1}{2}\overline{AB}$, $\overline{CE} = \frac{1}{2}\overline{BC}$ 이고 $\overline{AB} = \overline{BC}$ 이므로 (④) ··· © ①, ○, ©에서 $\triangle ADC$ 와 $\triangle CEA$ 는 SAS 합동 따라서 (③)

② \overline{AE} , $\overline{AE} = \overline{CD}$, $\overline{AE} \leftarrow \overline{CD}$ 와 길이가 같다.

① \overline{AE} , $\overline{AD} = \overline{CE}$, \overline{AB} 는 \overline{CB} 와 길이가 같다.

- ③ \overline{AC} , $\overline{AD} = \overline{CE}$, $\overline{AB} \leftarrow \overline{CB}$ 와 길이가 같다.
- ④ \overline{AC} , $\overline{AE} = \overline{CD}$, $\overline{AB} \leftarrow \overline{CB}$ 와 길이가 같다.
- ⑤ \overline{AC} , $\overline{AD} = \overline{CE}$, $\overline{AE} 는 \overline{CD}$ 와 길이가 같다.

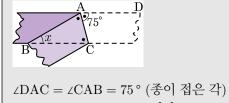

[결론] $\overline{AE} = \overline{CD}$ [증명] $\triangle ADC$ 와 $\triangle CEA$ 에서 (\overline{AC})는 공통...⊙ $\angle DAC = \angle ECA$...ⓒ 또 $\overline{AD} = \frac{1}{2}\overline{AB}$, $\overline{CE} = \frac{1}{2}\overline{BC}$ 이고 $\overline{AB} = \overline{BC}$ 이므로

[가정] $\overline{AB} = \overline{BC}$, 점 D, E 는 \overline{AB} 와 \overline{BC} 의 중점

①, \mathbb{C} , \mathbb{C} 에서 ΔADC 와 ΔCEA 는 SAS 합동 따라서 (\overline{AE} 는 \overline{CD} 와 길이가 같다.)

 $(\overline{\mathrm{AD}} = \overline{\mathrm{CE}}\) \cdots \bigcirc$

15. 다음 그림과 같이 폭이 일정한 종이 테이프를 접었다. $\angle CAD = 75^{\circ}$ 일 때, ∠x의 크기는?

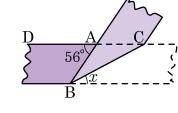


① 20° ② 25°

해설

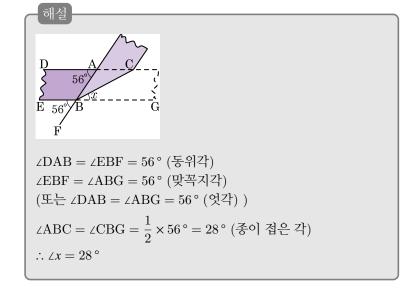
③30°

④ 35° ⑤ 40°

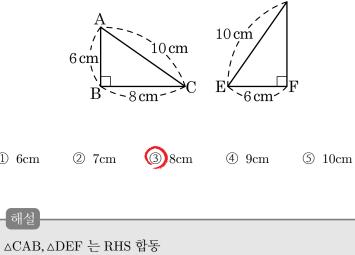


 $\angle DAC = \angle ACB = 75^{\circ}$ (엇각)

따라서 $\triangle ABC$ 는 밑각의 크기가 $75\,^{\circ}$ 이고, $\overline{AB}=\overline{BC}\,$ 인 이등변

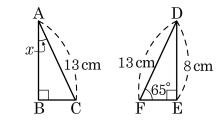

삼각형이다. $\therefore \ \angle x = 180^{\circ} - 75^{\circ} - 75^{\circ} = 30^{\circ}$

16. 다음 그림과 같이 폭이 일정한 종이 테이프를 접었다. $\angle BAD = 56\,^\circ$ 일 때, ∠x의 크기는?



① 20° ② 22° ③ 24°

④ 26 °


17. 두 직각삼각형 ABC, DEF 가 다음 그림과 같을 때, $\overline{\mathrm{DF}}$ 의 길이는?

 $\therefore \overline{\mathrm{DF}} = \overline{\mathrm{CB}} = 8\mathrm{cm}$

① 6cm

 ${f 18}$. 합동인 두 직각삼각형 ABC, DEF가 다음 그림과 같을 때, $\angle x$ 의 크 기는?

① 65° ② 55° ③ 45°

4 35°

 \triangle ABC, \triangle DEF는 서로 합동이다.

해설

 $\therefore \angle x = \angle \text{FDE} = 180^{\circ} - 90^{\circ} - 65^{\circ} = 25^{\circ}$

19. 다음 그림은 $\angle A = 90$ ° 인 직각이등변삼각형 ABC 에서 꼭짓점 A 를 지나는 직선 l 위에 점 B,C 에서 각각 수선 $\overline{BD},$ \overline{CE} 를 그은 것이다. $\overline{\mathrm{DE}}$ 의 길이는?

 \bigcirc 4cm

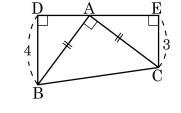
 \bigcirc 5cm

 \odot 6cm

47cm

 \bigcirc 8cm

 $\triangle ABD$ 와 $\triangle CAE$ 에서 $\angle BDA = \angle AEC = 90\,^{\circ}$, $\overline{AB} = \overline{CA}$ 이고


해설

 $\triangle ABD$ 에서 $\angle DBA + \angle BAD = 90$ ° 이고 $\angle BAD + \angle CAE = 90$ °이므로 $\angle DBA = \angle CAE$

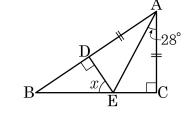
 $\therefore \triangle ABD \equiv \triangle CAE \, (RHA \,\, 합동)$ $\overline{\mathrm{BD}} = \overline{\mathrm{AE}}, \overline{\mathrm{DA}} = \overline{\mathrm{EC}}$ 이므로

 $\therefore \overline{\rm DE} = \overline{\rm DB} + \overline{\rm EC} = 4 + 3 = 7 (\rm cm)$

20. 다음 그림에 대한 설명 중 <u>틀린</u> 것은?

- ① \triangle ABD \equiv \triangle CAE 일 합동조건은 RHS 합동이다. ② \triangle ABD \equiv \triangle CAE 일 합동조건은 RHA 합동이다.
- ③ ∠DAB = ∠ECA
- $\textcircled{4} \angle DAB + \angle EAC = 90^{\circ}$

△ABD ≡ △CAE 일 합동조건은


AB = AC, ∠D = ∠E = 90°, ∠DAB = ∠ECA 이므로 RHA합동이다.

- **21.** 다음 그림의 $\triangle ABC$ 는 $\overline{AC} = \overline{BC}$ 인 직각이등 변삼각형이다. 빗변 AB 위에 $\overline{\mathrm{AC}}=\overline{\mathrm{AD}}$ 가 되 게 점 D 를 잡고, 점 D 를 지나며 \overline{AB} 에 수직인 직선과 $\overline{\mathrm{BC}}$ 와의 교점을 E 라 할 때, $\overline{\mathrm{EC}}=6\mathrm{cm}$ 이다. ΔBDE 의 넓이는? $2 14 \text{cm}^2$
- 418cm^2
- \bigcirc 20cm²
- $3 16 \text{cm}^2$

해설

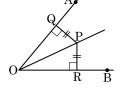
 $\triangle ADE \equiv \triangle ACE \text{ (RHS 합동)}$ 이므로 $\overline{DE} = \overline{CE} = 6 \text{cm}$, $\triangle BDE = \overline{A}$ 직각이등변삼각형이므로 $\overline{DE} = \overline{DB} = 6 \text{cm}$ $\therefore \triangle BDE = \frac{6 \times 6}{2} = 18 (cm^2)$

 ${f 22}$. 다음 그림과 같은 직각삼각형 ABC 에서 $\overline{
m AC}=\overline{
m AD}$, $\angle {
m EAC}=28^{\circ}$ 일 때, ∠x 의 크기를 구하여라.

② 56°

③ 58°

4 60°

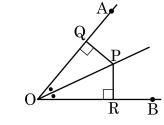

⑤ 62°

 $\triangle \text{AED} \equiv \triangle \text{AEC} \; (\text{RHS 합동})$

① 54°

 $\angle AED = \angle AEC = 62^{\circ}$ $\therefore \angle x = 180^{\circ} - (62^{\circ} + 62^{\circ}) = 56^{\circ}$

- 23. 다음 그림과 같이 $\angle AOB$ 의 내부의 한 점 P에서 두 변 OA, OB에 내린 수선의 발을 각각 Q, R 라 하자. $\overline{\mathrm{PQ}}=\overline{\mathrm{PR}}$ 일 때, 다음 중 옳지 <u>않은</u> 것은?



- $\overline{\text{OQ}} = \overline{\text{OP}}$
- ② $\angle OPQ = \angle OPR$ $\textcircled{4} \ \angle POQ = \angle POR$

 $\Delta \mathrm{OPR}$ 과 삼각형 $\Delta \mathrm{OPQ}$ 는 직각삼각형이고 빗변의 길이와 다른

한 변의 길이가 각각 같으므로 RHS 합동이다. 따라서 옳지 않은 것은 $\overline{\mathrm{OQ}} = \overline{\mathrm{OP}}$ 이다.

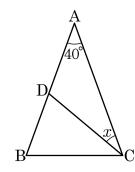
 ${f 24}$. 다음 그림은 \lceil 한 점 ${f P}$ 에서 두 변 ${f OA}, {f OB}$ 에 내린 수선의 발을 각각 Q,R 라 할 때, $\overline{PQ}=\overline{PR}$ 이면 \overline{OP} 는 $\angle AOB$ 의 이등분선이다.」를 보이기 위해 그린 것이다. 다음 중 필요한 조건이 아닌 것은?

② OP 는 공통

④는 옳다는 것을 보여야 할 대상이므로 필요한 조건이 아니다.

해설

 \triangle QPO 와 \triangle RPO 에서 i)OP 는 공통 (②)


ii) $\overline{PQ} = \overline{PR} \ (가정) \ (①)$

iii) $\angle PQO = \angle PRO = 90^{\circ}$ (가정) (③)

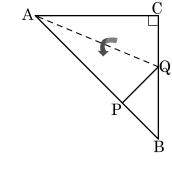
i), ii), iii) 에 의해 △QPO ≡ △RPO (RHS 합동) (⑤) 이다. 합동인 도형의 대응각은 같으므로

 $\angle QOP = \angle ROP$ 이므로 \overline{OP} 는 $\angle AOB$ 의 이등분선이다.

 ${f 25}$. 다음 $\triangle {
m ABC}$ 에서 ${
m \overline{AB}}={
m \overline{AC}},\ {
m \overline{CB}}={
m \overline{CD}},\ \angle {
m A}=40\,^{\circ}$ 일 때, $\angle x$ 의 크기

① 20° ② 25° ③30° ④ 35° ⑤ 40°

△ABC에서


해설

 $\angle ABC = \angle ACB = \frac{1}{2}(180 \,^{\circ} - 40 \,^{\circ}) = 70 \,^{\circ}$ △CDB에서

 $\angle BCD = 180^{\circ} - (2 \times 70^{\circ}) = 40^{\circ}$

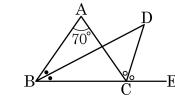
따라서 $\angle x = 70^{\circ} - 40^{\circ} = 30^{\circ}$ 이다.

26. 직각이등변삼각형 모양의 종이를 다음 그림과 같이 접었다. 다음 중 옳지 <u>않은</u> 것은?

 \bigcirc $\angle PAQ = \angle CAQ$

① $\triangle APQ \equiv \triangle ACQ$

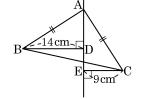
 $\bigcirc \overline{AP} = \overline{AC}$


- \bigcirc $\angle APQ = 90^{\circ}$

해설

종이를 접은 모양이므로

 $\triangle APQ \equiv \triangle ACQ$, $\overline{AP} = \overline{AC}$, $\angle PAQ = \angle CAQ$, $\angle APQ = \angle ACQ = 90^{\circ}$


27. $\triangle ABC$ 에서 $\overline{AB}=\overline{AC}$ 이고, $\angle C$ 의 외각의 이등분선과 $\angle B$ 의 이등분선의 교점을 D 라고 한다, $\angle A=70^\circ$ 일 때, $\angle D$ 의 크기는?

① 32.5° ② 35° ③ 37.5° ④ 40° ⑤ 42.5°

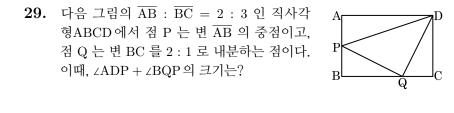
 $\triangle ABC$ 가 이등변삼각형이므로 $\angle ABC = \angle ACB = \frac{1}{2}(180^{\circ} - 70^{\circ}) = 55^{\circ}$ $\angle ACD = \frac{1}{2}(\angle A + \angle ABC)$ $= \frac{1}{2}(70^{\circ} + 55^{\circ})$ $= 62.5^{\circ}$ $\angle DBC = \frac{1}{2}(\angle ABC) = \frac{1}{2} \times 55^{\circ} = 27.5^{\circ}$ $\therefore \angle D = 180^{\circ} - (27.5^{\circ} + 55^{\circ} + 62.5^{\circ})$ $= 180^{\circ} - 145^{\circ}$ $= 35^{\circ}$

28. 다음 그림과 같이 직각이등변삼각형 ABC 의 두 점 B, C 에서 점 A 를 지나는 직선에 내린 수선의 발을 각각 D, E 라 하자. $\overline{BD} = 14 \mathrm{cm}$, $\overline{CE} = 9 \mathrm{cm}$ 일 때, \overline{DE} 의 길이는 ?

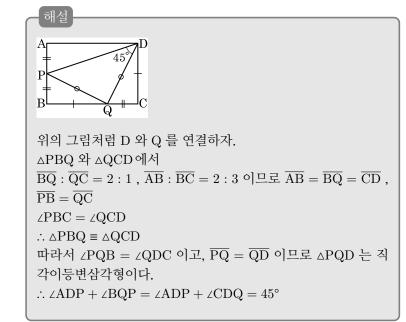
① 3cm

② 3.5cm

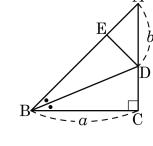
③ 4cm


4.5cm

⑤ 5cm


△ABD ≡ △CAE (RHA 합동)이므로 $\overline{\mathrm{BD}} = \overline{\mathrm{AE}} = 14\mathrm{cm}$,

해설


 $\overline{AD} = \overline{CE} = 9cm$ $\therefore \overline{DE} = \overline{AE} - \overline{AD} = 5(cm)$

30. $\angle C = 90^\circ$ 인 직각이등변삼각형 ABC 에서 $\angle B$ 의 이등분선이 \overline{AC} 와 만나는 점을 D , D 에서 \overline{AB} 에 내린 수선의 발을 E 라 할 때 $\overline{BC}=a$, $\overline{\mathrm{AD}} = b$ 라 하면 $\overline{\mathrm{AB}}$ 의 길이를 a, b 로 나타내면?

4 a+b

① a-b

2a - b $\frac{1}{2}a + b$

32b-a

 $\overline{AC} = \overline{BC}$ 이므로 $\overline{DC} = a - b$

 Δ BCD \equiv Δ BED (RHA합동) 이고 Δ AED 가 직각이등변삼각형 이므로,

 $\overline{\mathrm{DC}} = \overline{\mathrm{DE}} = \overline{\mathrm{AE}}, \ \overline{\mathrm{BC}} = \overline{\mathrm{BE}}$ $\overline{AB} = \overline{BE} + \overline{EA} = a + a - b$

=2a-b

 $\therefore \overline{\mathrm{AB}} = 2a - b$