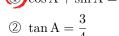
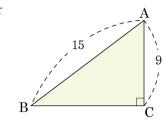

1. 삼각형 ABC 는 $\angle C=90^\circ$ 인 직각삼각형이다. $\overline{AC}=4,\;\overline{BC}=3$ 일 때, 다음 설명 중 옳은 것은?

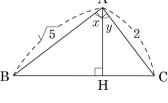


- ① $\sin A = \frac{4}{5}$ ② $\cos A = \frac{3}{4}$ ③ $\tan A = \frac{4}{3}$ ④ $\sin B = \frac{3}{5}$

- $\overline{AB} = \sqrt{4^2 + 3^2} = \sqrt{25} = 5$ ① $\sin A = \frac{3}{5}$ ② $\cos A = \frac{4}{5}$ ③ $\tan A = \frac{3}{4}$ ④ $\sin B = \frac{4}{5}$


2. 다음 직각삼각형 ABC 에서 옳은 것을 모두 고르면? (정답 2개)

해설


$$\overline{BC} = \sqrt{15^2 - 9^2} = 12$$

$$2 \tan A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{3}$$

$$2 \tan A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{3}$$

$$4 \tan B = \frac{AC}{\overline{AC}} = \frac{3}{4}$$

3. 다음 그림과 같이 ∠A = 90° 인 직각 삼각형의 점 A 에서 빗변에 내린 수 선의 발을 H 라 하고, $\overline{AB} = \sqrt{5}\,\mathrm{cm}$, $\overline{AC} = 2 \text{ cm}, \angle BAH = x, \angle CAH = y$ 일 때, $\cos x + \cos y$ 의 값은?

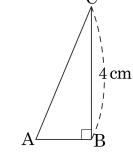
- ① $\frac{\sqrt{5}}{2}$ ② $\frac{3\sqrt{5}}{2}$ ② $\frac{2+3\sqrt{5}}{3}$

$$3 \frac{2+\sqrt{5}}{3}$$

 $\triangle ABC$ $\hookrightarrow \triangle HBA$ $\hookrightarrow \triangle HAC$ 이므로

 $\angle ABH = y$, $\angle ACH = x$

$$\frac{7}{BC} = \sqrt{2^2 + (\sqrt{5})^2} =$$


$$\overline{BC} = \sqrt{2^2 + (\sqrt{5})^2} = 3$$

$$\therefore \cos x + \cos y = \frac{\overline{AC}}{\overline{BC}} + \frac{\overline{AB}}{\overline{BC}}$$

$$= \frac{2}{3} + \frac{\sqrt{5}}{3}$$

$$= \frac{2 + \sqrt{5}}{3}$$

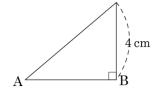
4. 다음 그림과 같은 직각삼각형 ABC 에서 $\tan C = \frac{5}{12}$ 이고, \overline{BC} 가 4cm 일 때, \overline{AB} 의 길이를 구하여라.

답: 5

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $\frac{5}{3}$ $\underline{\mathrm{cm}}$

 $\tan C = \frac{\overline{AB}}{\overline{BC}} = \frac{\overline{AB}}{4} = \frac{5}{12}$ 이므로 $4 \times 5 = 12 \times \overline{AB}$ 이다. 따라서 $\overline{AB} = \frac{5}{3}$ cm 이다. 5. 다음 그림과 같은 직각삼각형 ABC 에서 $\sin A=\frac{4}{5}$ 이고, $\overline{BC}=12$ 라고 한다. 직각삼각형 ABC 의 넓이를 구하여라.



▶ 답:

▷ 정답: 54

 $\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{5}$ 이므로 $\overline{BC} = \overline{AC} \times \sin A$ 이다. ⇒ $12 = \overline{AC} \times \frac{4}{5}$, $\overline{AC} = 15$ 피타고라스 정리에 의해 $\overline{AB} = \sqrt{15^2 - 12^2} = 9$ 이다. 따라서 삼각형 ABC 의 넓이는 $9 \times 12 \times \frac{1}{2} = 54$ 이다.

다음 그림과 같은 직각삼각형 ABC 에서 $\sin A = \frac{2}{3}$ 이고, \overline{BC} 가 4cm 일 때, \overline{AB} 의 길이는?

- $\bigcirc 2\sqrt{5}\,\mathrm{cm}$ $\bigcirc 3 \, \mathrm{cm}$
- $2 4\sqrt{5} \,\mathrm{cm}$ \bigcirc $4\sqrt{3}$ cm
- $3 2\sqrt{7} \,\mathrm{cm}$

$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{2}{3}$$
 이므로 $4 = \overline{AC} \times \frac{2}{3}$ 이다.
$$\Rightarrow \overline{AC} = 6 \text{cm}$$
 따라서 피타고라스 정리에 의해 $\overline{AB} = \sqrt{6^2 - 4^2} = \sqrt{20} = \sqrt{20}$

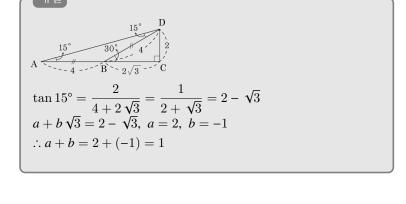
 $2\sqrt{5}$ cm 이다.

7. 다음 그림과 같은 직각삼각형 ABC 에서 $\sin A \times \tan B - \cos B$ 의 값을 구하여라.


13 cm

ightharpoonup 정답: $rac{7}{13}$

$$\overline{AC} = \sqrt{13^2 - 5^2} = 12(\text{cm})$$


$$\sin A \times \tan B - \cos B = \frac{5}{13} \times \frac{12}{5} - \frac{5}{13} = \frac{7}{13}$$

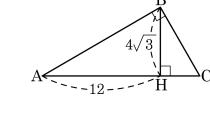
8. 다음 그림에서 $\tan 15^\circ$ 의 값이 $a+b\sqrt{3}$ 일 때, a+b 의 값을 구하여라.

▶ 답:

▷ 정답: 1

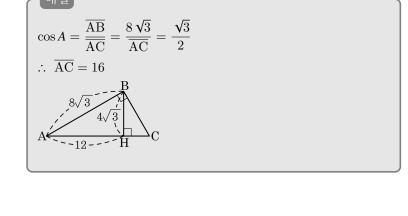
 $\tan A = 1$ 일 때, $(1+\sin A)(1-\cos A)$ 의 값을 구하여라. (단, $0^{\circ} \le$ 9. $A \leq 90$ °)

ightharpoonup 정답: $rac{1}{2}$

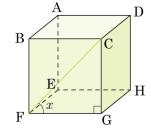

▶ 답:

 $\tan 45$ ° = 1 이므로 $\angle A = 45$ °

 $(1 + \sin 45^{\circ})(1 - \cos 45^{\circ})$


 $= \left(1 + \frac{\sqrt{2}}{2}\right) \left(1 - \frac{\sqrt{2}}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2}$

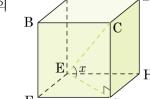
10. 다음 그림에서 $\cos A=\frac{\sqrt{3}}{2}$ 이고, $\overline{\rm AH}=12,\;\overline{\rm BH}=4\,\sqrt{3}\;\rm 일\;\vec{\rm m},\;\overline{\rm AC}\;\rm 의 \rm \c 2ole?}$



① 10 ② 12 ③ 14

⑤ 18

11. 다음 그림은 한 변의 길이가 1 인 정육면 체이다. $\angle CFG = x$ 일 때, $\sin x$ 의 값을 구하면?



- ① $\frac{\sqrt{2}}{2}$ ② $\frac{2\sqrt{2}}{3}$ ③ $\frac{2}{3}$ ④ $\frac{\sqrt{6}}{2}$
- ⑤ 2

$$\overline{\text{CF}} = \sqrt{2}, \overline{\text{CG}} = 1$$
 이므로
$$\sin x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \text{ 이다.}$$

$$\sqrt{2}$$
 2

12. 다음 그림은 한 변의 길이가 2 인 정육면 체이다. $\angle CEG = x$ 일 때, $\sin x + \cos x$ 의 값을 구하면?

①
$$\frac{\sqrt{3}}{\frac{3}{3}}$$
 ② $\frac{2\sqrt{3}}{\frac{3}{3}}$ ② $\frac{\sqrt{6} - \sqrt{3}}{3}$

$$3 \frac{2}{3}$$

$$\overline{\text{CE}} = 2\sqrt{3}$$
 $\overline{\text{EG}} = 2\sqrt{2}$
 $\overline{\text{CG}} = 2$ 이므로

해설

$$\overline{\text{CG}} = 2 \ \circ] \square \underline{\square}$$

$$\sin r + \cos r =$$

$$\sin x + \cos x = \frac{2}{2\sqrt{3}} + \frac{2\sqrt{2}}{2\sqrt{3}} = \frac{\sqrt{3} + \sqrt{6}}{3} \text{ or}.$$

- 13. 다음 중 옳은 것을 모두 고르면? (정답 2개)

- $\Im \sin 90^\circ = \cos 0^\circ = \tan 90^\circ$
- $90^{\circ} + \cos 90^{\circ} + \tan 45^{\circ} = 2$

① $\sin 90^\circ = 1, \cos 90^\circ = 0, \tan 90^\circ$ 는 정할 수 없다.

해설

- ② $\sin 30^{\circ} = \frac{1}{2}, \cos 60^{\circ} = \frac{1}{2}, \tan 45^{\circ} = 1$ 이므로 $\sin 30^{\circ} =$
- $\cos 60^{\circ} \neq \tan 45^{\circ}$ ③ $\sin 90^{\circ} = 1, \cos 0^{\circ} = 1, \tan 90^{\circ}$ 는 정할 수 없다.
- ④ $\sin 90^{\circ} = 1, \cos 90^{\circ} = 0, \tan 45^{\circ} = 1$ 이므로 1 + 0 + 1 = 2⑤ $\cos 0^{\circ} = 1, \tan 0^{\circ} = 0, \sin 90^{\circ} = 1$ 이므로 1 + 0 = 1

14. 다음 식의 값은?
$$\frac{1}{2} \tan 45^{\circ} - 3\sqrt{2} \cos 60^{\circ}$$

$$\frac{1}{2}\tan 45^{\circ} - 3\sqrt{2}\cos 60^{\circ} + \sqrt{3}\sin 60^{\circ}$$

$$4 - 3\sqrt{3}$$

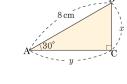
해설
$$(\widetilde{\Xi}^{\lambda}) = \frac{1}{2} \times 1 - 3\sqrt{2} \times \frac{1}{2} + \sqrt{3} \times \frac{\sqrt{3}}{2}$$

$$= \frac{1}{2} - \frac{3}{2}\sqrt{2} + \frac{3}{2}$$

$$= \frac{4 - 3\sqrt{2}}{2} \text{ 이다.}$$

$$=\frac{4-3\sqrt{2}}{2} \circ]$$

15. $-2\sin 60^{\circ} + \sqrt{3}\tan 45^{\circ} \times \tan 60^{\circ}$ 를 계산한 값은? ① $3 - \sqrt{3}$ ② $\frac{\sqrt{3}}{2} - 3$ ③ $3 - \frac{\sqrt{3}}{2}$ ④ 0 ⑤ 2

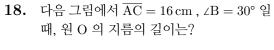

해설 $-2 \times \frac{\sqrt{3}}{2} + \sqrt{3} \times 1 \times \sqrt{3} = -\sqrt{3} + 3$ 이다.

- ① $1 + \frac{\sqrt{2}}{4}$ ② $1 + \frac{\sqrt{3}}{4}$ ③ $2 + \frac{\sqrt{2}}{4}$ ③ $2 + \frac{\sqrt{3}}{4}$

$$\begin{vmatrix} -2 \times \sqrt{2} \times \sqrt{2} \\ -2 & 1 \end{vmatrix}$$

기설
$$2\sin 45^{\circ}\cos 45^{\circ} + \cos 30^{\circ}\sin 30^{\circ}$$
 $= 2 \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \times \frac{1}{2} = 1 + \frac{\sqrt{3}}{4}$

17. 다음 그림에서 $\overline{\mathrm{AB}} = 8\mathrm{cm}$, $\angle \mathrm{A} = 30^\circ$ 일 때, x,y 의 길이를 구하여라.


답: 답:

 $\underline{\mathrm{cm}}$ $\underline{\mathrm{cm}}$

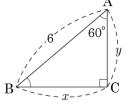
ightharpoonup 정답: $x=4\underline{
m cm}$

ightharpoonup 정답: $y = 4\sqrt{3}$ $\underline{\text{cm}}$

 $\sin 30^{\circ} = \frac{x}{8}$ $x = 8 \times \sin 30^{\circ} = 8 \times \frac{1}{2} = 4 \text{ (cm)}$ $\cos 30^{\circ} = \frac{y}{8}$ $y = 8 \times \cos 30^{\circ} = 8 \times \frac{\sqrt{3}}{2} = 4\sqrt{3} \text{ (cm)}$

 \bigcirc 10 cm

 $\textcircled{4} \ 25\,\mathrm{cm}$


 $32 \, \mathrm{cm}$

 $3 16\,\mathrm{cm}$

16 cm

 $\overline{AB} = \frac{16}{\sin 30^{\circ}} = 32$ $\therefore \overline{AB} = 32 (\,\mathrm{cm})$

19. 다음 그림의 직각삼각형 ABC 에서 \overline{AB} = $6, \angle C = 90$ °, $\angle A = 60$ ° 일 때, x + y 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $3+3\sqrt{3}$

$$y = \overline{AC} = 6 \times \cos 60^{\circ} = 6 \times \frac{1}{2} = 3$$

또한, $\angle B = 30^{\circ}$ 이므로 $x = \overline{BC} = 6 \times \cos 30^{\circ} = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$

따라서 $x + y = 3 + 3\sqrt{3}$ 이다.

20. 다음 그림의 직각삼각형에서 x의 값은?

① 10 ② 9 ③8

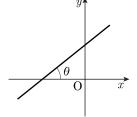
4 7 **5** 6

$$\sin 30^\circ = \frac{4}{x} \text{ 이코 } \sin 30^\circ = \frac{1}{2} \text{ 이므로 } \frac{4}{x} = \frac{1}{2}$$

∴ $x = 8$

- **21.** 다음 그림을 참고하여 2*x y*의 값을 구하면?

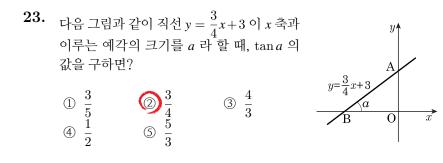
① 0 2 1 3 2 4 3 5 4

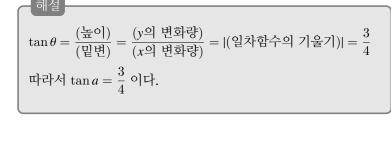

$$\sin 45^{\circ} = \frac{x}{7\sqrt{2}} = \frac{\sqrt{2}}{2}, \ x = 7$$

$$\sin 30^{\circ} = \frac{x}{y} = \frac{7}{y} = \frac{1}{2}, \ y = 14$$

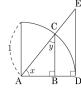
$$\therefore 2x - y = 14 - 14 = 0$$

$$\therefore 2x - y = 14 - 14 = 0$$


22. 다음 그림에서 직선 4x - 5y + 20 = 0과 x축의 양의 부분이 이루는 각을 θ 라고 할 때, $\tan \theta$ 의 값은?



- ① $\frac{1}{2}$ ② $\frac{4}{5}$ ③ $\frac{\sqrt{3}}{3}$ ④ $\sqrt{3}$ ⑤ $\frac{\sqrt{3}}{2}$


$$y = \frac{4}{5}x + 4$$

$$4x - 5y + 20 = 0$$
$$y = \frac{4}{5}x + 4$$
에서
$$7) 울 7) \frac{4}{5} = \tan \theta$$

24. 다음 그림은 반지름의 길이가 1 인 사분원이다. 다음 값을 분모가 1 인 길이로 나타내었을 때, 그 길이가 \overline{BC} 와 같은 것을 모두 고르면?

 $\sin x = \cos y = \overline{BC}$

25. $\sin 0^{\circ} \times \tan 0^{\circ} - \cos 0^{\circ}$ 의 값을 A , $\sin 90^{\circ} \times \cos 90^{\circ} + \tan 0^{\circ}$ 의 값을 B 라 할 때, B – A 의 값은?

- ① -2 ② -1 ③ 0 ④ 1
 - ⑤ 2

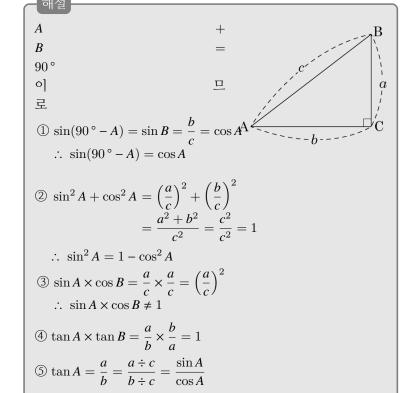
 $A = 0 \times 0 - 1 = -1$, $B = 1 \times 0 + 0 = 0$ 이므로 B - A = 0 - (-1) = 1

26. 다음 삼각비의 값 중 가장 작은 값은?

① sin 25° ② cos 0° ③ cos 10°
④ tan 45° ⑤ tan 60°

① $\sin 25^{\circ}$ 와 ③ $\cos 10^{\circ}$ $0^{\circ} \le x < 45^{\circ}$ 일 때, $\sin x < \cos x$ 따라서 $\sin 25^{\circ} < \cos 10^{\circ} < 1$ ② $\cos 0^{\circ} = 1$ ④ $\tan 45^{\circ} = 1$ ⑤ $\tan 60^{\circ} = \sqrt{3}$ 따라서 가장 작은 값은 ① $\sin 25^{\circ}$ **27.** $\sqrt{(\cos A - 1)^2} - \sqrt{(1 + \cos A)^2}$ 의 값은? (단, $0^\circ < A \le 90^\circ$)

① 1 ② 2

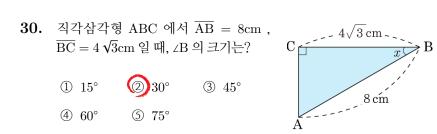

 $\Im - \cos A$

 \bigcirc $-2\cos A$

해설

 $0 \le \cos A < 1$ 이므로 $(\frac{2}{1}$ 시) = $-(\cos A - 1) - (1 + \cos A) = -2\cos A$

- ① $\sin(90^{\circ} A) = \cos A$ ② $\sin^2 A = 1 \cos^2 A$
- $\Im \tan A = \frac{\sin A}{\cos A}$


29. $0^{\circ} < A < 90^{\circ}$ 일 때, 다음을 간단히 하면? $\sqrt{(\cos A + 1)^2} + \sqrt{(\cos A - 1)^2} + \sqrt{4\cos^2 A}$

- ① $\cos A 1$ ② $\cos A + 2$ $4 \cos A + 1$
 - $\bigcirc 2\cos A + 2$
- $\Im 2\cos A 1$

 $0^{\circ} < A < 90^{\circ}, \ 0 < \cos A < 1$

 $=2\cos A+2$

 $\sqrt{(\cos A + 1)^2} + \sqrt{(\cos A - 1)^2} + \sqrt{4\cos^2 A}$ = \cos A + 1 - (\cos A - 1) + 2\cos A

해설
$$\cos x = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$$
이므로 $x = 30^\circ$ 이다.

- $oldsymbol{31}$. 이차방정식 $x^2-3=0$ 을 만족하는 x 의 값이 an A 의 값과 같을 때, $\sin A\cos A$ 의 값은? (단, 0° < A < 90°)
 - ① $\frac{1}{2}$ ② $\frac{\sqrt{3}}{2}$ ③ $\frac{1}{4}$ ④ $\frac{\sqrt{3}}{4}$ ⑤ $\frac{3\sqrt{3}}{4}$

 $x^2 - 3 = 0$ od A $x^2 = 3$, $\therefore x = \sqrt{3} \ (\because x > 0)$ $\tan A = \sqrt{3}$, $\therefore A = 60^{\circ} \ (\because 0^{\circ} < A < 90^{\circ})$

 $\sin A \cos A = \sin 60^{\circ} \times \cos 60^{\circ} = \frac{\sqrt{3}}{2} \times \frac{1}{2} = \frac{\sqrt{3}}{4}$

32. 다음 주어진 표를 보고 x + y 의 값을 구하면?

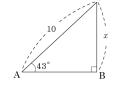
각도	sin	cos	tan
:	:	÷	:
14°	0.2419	0.9703	0.2493
15°	0.2588	0.9859	0.2679
16°	0.2766	0.9613	0.2867
:	:	÷	:

 $\sin x = 0.2766$, $\tan y = 0.2493$

① 28°

② 29°

③30°


④ 31° ⑤ 32°

 $\sin x = 0.2766 \therefore x = 16^{\circ}$

해설

 $\tan y = 0.2493 \ \therefore y = 14^{\circ}$ $\therefore x + y = 16^{\circ} + 14^{\circ} = 30^{\circ}$

33. 다음 그림의 \triangle ABC 에서 삼각비의 표를 보고 x 의 값을 구하면?

x	sin x	cos x	tan x
43°	0.6820	0.7314	0.9325
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6821	1.0724

① 6.82 ② 6.947 ③ 7.071 ④ 7.193 ⑤ 7.314

 $\sin 43^\circ = \frac{x}{10}$ 이므로 $x = 10 \times \sin 43^\circ = 10 \times 0.682 = 6.82$: 6.82