
1. 다음 그림에서
$$\overline{AD} / / \overline{PQ} / \overline{BC}$$
 이고, M,N
는 각각 변 AB,DC 의 중점이다. $\overline{AD} = 6$, $\overline{BC} = 10$ 일 때, 선분 PQ 의 길이는?
① 1 ② 2 ③ 3 ④ 4 ⑤ 5

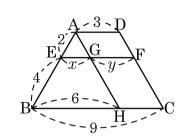
해설
$$\overline{QN} = \frac{1}{2}\overline{AD} = 3 ,$$

$$\overline{PN} = \frac{1}{2}\overline{BC} = 5 ,$$

$$\overline{PQ} = \overline{PN} - \overline{QN} = 5 - 3 = 2$$

다음 그림에서 $l \parallel m \parallel n$ 일 때, x의 값은?

3 7


40.5

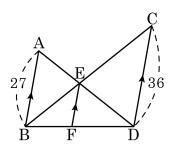
⑤ 9

$$5: x = 6:8$$
$$6x = 40$$

$$\therefore \ \ x = \frac{20}{3}$$

다음 그림과 같이 $\overline{AD}/\overline{BC}$ 인 사다리꼴 ABCD에서 $\overline{EF}/\overline{BC}$ 일 때, 3. x, v 의 값을 각각 구하면?

①
$$x = 3$$
, $y = 3$ ② $x = 2$, $y = 3$ ③ $x = 4$, $y = 3$

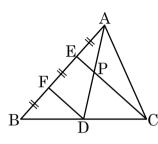

④
$$x = 3$$
, $y = 2$ ⑤ $x = 2$, $y = 5$

(5)
$$x = 2, y = 5$$

 $\overline{AE} : \overline{EG} = \overline{AB} : \overline{BH}$ 이므로 2 : x = 6 : 6, x = 2 이다.

 $\overline{AD} = \overline{CH} = \overline{GF} = 3, y = 3$ 따라서 x = 2, y = 3 이다.

다음 그림에서 \overline{BF} : \overline{FD} 의 비는?

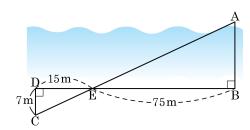


- ① 2:3
- 2 3:4 3 3:5 4 4:5 5 5:6

△ABE ∽ △DCE 이므로

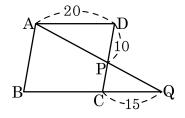
 $\overline{AE} : \overline{DE} = \overline{AB} : \overline{CD} = 3 : 4, \overline{AE} : \overline{DE} = \overline{BF} : \overline{FD} = 3 : 4$

5. 다음 그림의 $\triangle ABC$ 에서 E, F 는 \overline{AB} 의 3 등분점이고, \overline{AD} 는 중선이다. $\overline{EP}=6cm$ 일 때, \overline{PC} 의 길이를 구하면?



$$\overline{\overline{FD}} = 2\overline{\overline{EP}} = 12(cm)$$

$$\overline{\overline{CE}} = 2\overline{\overline{FD}} = 24(cm)$$


$$\therefore x = \overline{\overline{CE}} - \overline{\overline{EP}} = 24 - 6 = 18(cm)$$
 이다.

6. 다음 그림은 강의 양쪽에 있는 두 지점 A, B사이의 거리를 알아보기 위하여 측정한 것이다. 이때 두 지점 A, B사이의 거리는?

① $21 \,\mathrm{m}$ ② $28 \,\mathrm{m}$ ③ $35 \,\mathrm{m}$ ④ $42 \,\mathrm{m}$ ⑤ $4 \,\mathrm{m}$

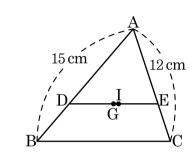
 $\triangle ABE \hookrightarrow \triangle CDE$ 이므로 $\overline{AB} : \overline{CD} = \overline{BE} : \overline{DE}, x : 7 = 75 : 15$ $\therefore x = 35 \text{ (m)}$ 7. 다음 평행사변형 ABCD 에서 \overline{AB} 의 길이는?

②
$$\frac{35}{3}$$

$$\frac{37}{3}$$

$$\overline{AB} = x$$
 라고 하면

$$\overline{AB} : \overline{PC} = \overline{BQ} : \overline{CQ}$$


$$x:(x-10)=(20+15):15$$

$$35(x - 10) = 15x$$

$$20x = 350$$

$$\therefore x = \frac{35}{2}$$

8. 다음 그림에서 점 G,I 는 각각 ΔABC 의 무게중심과 내심이다. $\overline{DE}//\overline{BC}$ 일 때, \overline{BC} 의 길이를 바르게 구한 것은?.

① 12cm

② 12.5cm

③ 13cm

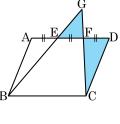
13.5cm

⑤ 14cm

 \overrightarrow{AD} : $\overrightarrow{AB} = 2$: $3 \circ | \overrightarrow{DE} \subseteq \overline{AD}$: 15 = 2: $3, \overrightarrow{AD} = 10 \text{ (cm)}, \overrightarrow{DB} = 5 \text{ (cm)}$

AE: AC = 2:3이므로

 $\overline{AE} : 12 = 2 : 3, \overline{AE} = 8 \text{ (cm)}, \overline{EC} = 4 \text{ (cm)}$ $\overline{DI} = \overline{DB}, \overline{EI} = \overline{EC}$ 이므로 $\overline{DE} = 5 + 4 = 9 \text{ (cm)}$

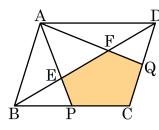

| $\overline{\mathrm{DE}}:\overline{\mathrm{BC}}=2:3$ 이므로

 $9: \overline{BC} = 2: 3, \overline{BC} = 13.5 \text{ (cm)}$

다음 그림에서 점 E.F 는 \overline{AD} 의 삼등분점이 9. 다. \overline{BE} , \overline{CF} 의 연장선의 교점을 G 라하고, □ABCD 의 넓이가 36 cm² 일 때, △GFE 와 △FCD 의 넓이의 비와 그 합은?

①
$$1:3,6\,\mathrm{cm}^2$$
 ② $1:2,9\,\mathrm{cm}^2$

 $31:3,12 \text{ cm}^2$ $41:3,15 \text{ cm}^2$ (5) 1: 2, 18 cm²



$$\triangle$$
GEF \bigcirc \triangle GBC 에서 닮음비는 $\overline{\text{EF}}: \overline{\text{BC}} = 1:3$ 이므로 넓이의 비는 $1:9$ 이다

$$8, \triangle FCD : \Box EBCF = 1 : 4$$

 $\therefore \triangle GEF : \triangle FCD = 1 : 2$
 $\Box EBCF = \frac{2}{3}\Box ABCD = 24(cm^2)$, $\triangle GFE$

$$3 (cm^2)$$
, $\triangle FCD = 6 (cm^2)$
 $\therefore \triangle GEF + \triangle FCD = 9 (cm^2)$

10. 다음 그림과 같은 평행사변형 ABCD 에서 변 BC , CD 의 중점을 각각 P , Q 라 하고, □ABCD 의 넓이가 90cm² 일 때, 오각형 EPCQF 의 넓이는?

 $30 \mathrm{cm}^2$

- ① 20cm^2 ② 25cm^2 ④ 35cm^2 ⑤ 40cm^2
 - 해설 ĀC 와 BD 의 교점을 G 라 하면, △ABC 에서 점 E 는 무게중심

무게중심의 성질에 의해 \overline{GE} : $\overline{EB} = 1$: 2 이다. $\square ABCD$ 의 넓이가 90 cm^2 이므로

 $\triangle BCD = 45 \text{ cm}^2$, $\triangle BGC = 22.5 \text{ (cm}^2)$ 이고

 $\Delta BEC = \frac{2}{3} \Delta BGC = 15 (= DDcmsq)$

따라서 (오각형EPCQF)

이다.

 $= \Delta BCD - (\Delta BEP + \Delta FQD)$

 $\triangle BEP = \triangle BEC \times \frac{1}{2} = 7.5 (\text{ cm}^2)$

 $= 45 - 7.5 \times 2 = 30 (\text{ cm}^2)$ 이다.