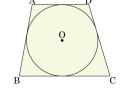

1. 다음 그림에서 $\overline{\mathrm{CD}}$ 의 길이를 구하여라.

답:


▷ 정답: 8

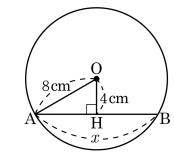
 $\overline{\mathrm{AB}} = x$ 라 하면

 $\begin{vmatrix} (\frac{1}{2}x)^2 = 5^2 - 3^2, & x^2 = 64 \\ \therefore & x = 8 \end{vmatrix}$

따라서 $\overline{\mathrm{CD}} = \overline{\mathrm{AB}} = 8$ 이다.

2. 다음 그림은 원 O 에 외접하는 등변사다리꼴 ABCD 에서 $\overline{AD} + \overline{BC} =$ 28 일 때, \overline{AB} 의 길이를 구하여라.

답:


➢ 정답: 14

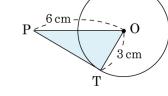
외접사각형의 성질에 의해

 $\overline{AD} + \overline{BC} = \overline{AB} + \overline{CD} = 28$

그런데, 등변사다리꼴은 $\overline{AB} = \overline{CD}$ 이므로 ∴ $\overline{AB} = 14$

3. 다음 그림과 같이 반지름의 길이가 $8 \, \mathrm{cm}$ 인 원 O 의 중심에서 현 AB 에 내린 수선의 길이가 $4 \, \mathrm{cm}$ 일 때, x의 길이는?

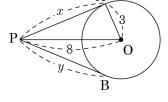
- ① $4\sqrt{3}$ cm ④ $7\sqrt{3}$ cm
- $2 5\sqrt{3} \text{ cm}$ $3 8\sqrt{3} \text{ cm}$
- $3 6\sqrt{3} \text{ cm}$


해설

 $\overline{AH} = \sqrt{8^2 - 4^2} = \sqrt{64 - 16}$

 $= \sqrt{48} = 4\sqrt{3} \text{ (cm)} 이므로$ $x = \overline{AB} = 2 \cdot \overline{AH} = 8\sqrt{3} \text{ (cm)}$

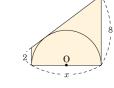
- 다음 그림에서 색칠한 부분의 넓이는? 4. (단, PT 는 원 O 의 접선)


 - ① $\frac{5}{2}\sqrt{3} \text{ cm}^2$ ② $3\sqrt{3} \text{ cm}^2$ ③ $\frac{7}{2}\sqrt{3} \text{ cm}^2$ ④ $4\sqrt{3} \text{ cm}^2$ ⑤ $\frac{9\sqrt{3}}{2} \text{ cm}^2$

 $\angle T = 90^{\circ}$ 이므로 $\overline{PT} = \sqrt{6^2 - 3^2} = 3\sqrt{3} \text{ (cm)}$ $\therefore 3\sqrt{3} \times 3 \times \frac{1}{2} = \frac{9\sqrt{3}}{2} \text{ (cm}^2\text{)}$

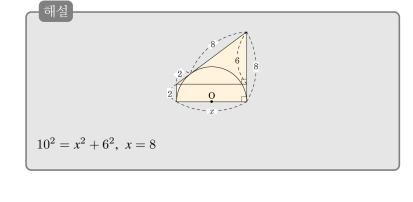
5. 다음 그림에서 \overline{PA} , \overline{PB} 는 원 O 의 접선이다. 이 때, xy 의 값은?

② 40 ⑤ 55 ③ 45

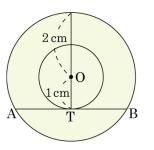


 $\overline{AP} = \overline{BP} = x$ $8^2 = 3^2 + x^2$

 $\therefore x = \sqrt{55} = y$


 $\therefore xy = \sqrt{55} \times \sqrt{55} = 55$

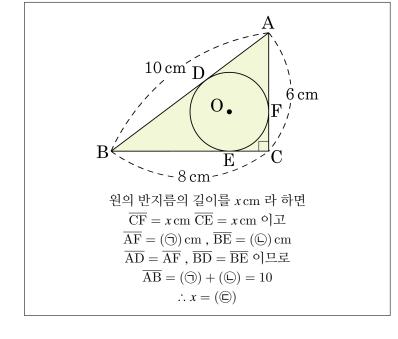
6. 다음 그림에서 x 의 길이를 구하여라.



답:

▷ 정답: 8

 7. 다음 그림과 같이 원 O 를 중심으로 하고 반지름의 길이가 각각 2cm, 1cm 인 두 원 이 있다. 작은 원에 접하는 AB 의 길이 는?



- ① 2 cm ④ 4 cm
- ② $2\sqrt{2}$ cm ③ $4\sqrt{3}$ cm
- $32\sqrt{3}$ cm

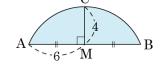
해설

 $\overline{OA} = 2 \text{ cm}, \overline{OT} = 1 \text{ cm}$ $\overline{AT} = \sqrt{2^2 - 1^2} = \sqrt{3} (\text{ cm})$ $\therefore \overline{AB} = 2\overline{AT} = 2\sqrt{3} (\text{ cm})$

8. 다음 그림의 원 O 는 $\overline{AB}=10\mathrm{cm}$, $\overline{BC}=8\mathrm{cm}$, $\overline{AC}=6\mathrm{cm}$ 이고 $\angle C=90^\circ$ 인 직각삼각형에 내접하고 있다. 원의 반지름의 길이를 구하는 과정이다. 다음 중 옳지 <u>않은</u> 것은?

- 4 $\overline{BD} = 6 \text{ cm}$
- $\odot \overline{BE} = 6 \,\mathrm{cm}$

③ © 3

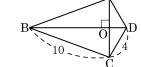

해설

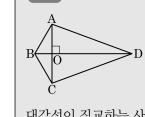
x = 2

① $\bigcirc 6-x$

② $\bigcirc 8 - x$

9. 다음 그림에서 원의 반지름의 길이는?

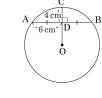

- ① 5 ② $\frac{11}{2}$ ③ 6
- $\bigcirc \frac{13}{2}$ $\bigcirc 5$ 7


반지름을 x 라 하면 $\overline{OM} = x - 4$, $x^2 = (x - 4)^2 + 6^2$... $x = \frac{13}{2}$ 10. 다음 그림의 $\square ABCD$ 에서 $\overline{AC} \bot \overline{BD}$ 일 때, $\overline{AB}^2 - \overline{AD}^2$ 의 값은?

① 6

4 64

② 36 **3**84



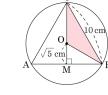
대각선이 직교하는 사각형에서는 다음 관계가 성립한다. $\overline{AB}^2+\overline{CD}^2=\overline{BC}^2+\overline{DA}^2$ $\therefore \overline{AB}^2+4^2=10^2+\overline{AD}^2$ $\therefore \overline{AB}^2-\overline{AD}^2=100-16=84$

3 54

11. 다음 그림에서 $\overline{\rm AD}=6{
m cm},$ $\overline{\rm CD}=4{
m cm}$ 일 때, 원 O 의 반지름의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

▶ 답:


ightharpoonup 정답: $rac{13}{2}$ $\underline{
m cm}$

해설

 $\overline{\text{OA}} = x$ 라고 하면 $\triangle \text{OAD}$ 에서 $x^2 = 6^2 + (x - 4)^2$ $x^2 = 36 + x^2 - 8x + 16$ 8x = 52

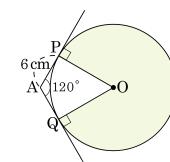
따라서 $x = \frac{13}{2}$ (cm)이다.

 ${f 12}$. 다음 그림과 같이 $\overline{
m AB}=\overline{
m BC}$ 인 이등변삼각형 ${
m ABC}$ 에서 $\overline{
m BC}=10{
m cm}$, $\overline{\mathrm{OM}} = \sqrt{5}\mathrm{cm}$ 일 때, $\triangle\mathrm{COB}$ 의 넓이는?

- ① $\frac{15\sqrt{3}}{2}$ cm² ② $\frac{5\sqrt{30}}{4}$ cm² ③ $5\sqrt{30}$ cm² ③ $\frac{5\sqrt{30}}{2}$ cm²

 $\overline{AB} = \overline{BC} = 10 \mathrm{cm}$, 점 O 에서 현 AB 에 내린 수선은 그 현을

이등분하므로 $\overline{\mathrm{MB}}=5\mathrm{cm}$

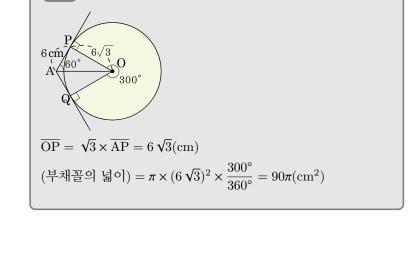

$$\triangle$$
OMB 에서 $\overline{OB} = \sqrt{(\sqrt{5})^2 + 5^2} = \sqrt{30} (cm)$
 $\triangle COB = \triangle CMB - \triangle OMB$

$$= \frac{1}{2} \times 5 \times (\sqrt{5} + \sqrt{30}) - \frac{1}{2} \times 5 \times \sqrt{5}$$
$$= \frac{5\sqrt{30}}{2} (cm^2)$$

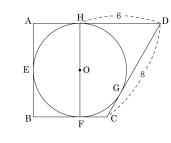
13. 다음 그림에서 AP, AQ 는 원 O 의 접선이고, 점 P, Q 는 원 O 의 접점이다.

AP = 6cm (PAO = 120° 인 때 생치되 부부인 넓이를 구하며?

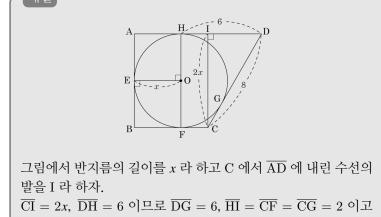
AP = 6cm , ∠PAQ = 120° 일 때, 색칠된 부분의 넓이를 구하면?



 $90\pi \text{cm}^2$


① $60\pi\mathrm{cm}^2$

- ② $70\pi \text{cm}^2$ ③ $100\pi \text{cm}^2$
- $3 80\pi \text{cm}^2$



14. 다음 그림과 같이 원 O 의 외접사각형 ABCD 에서 네 점 E, F, G, H 는 접점이고 선분 HF 는 원 O 의 지름이다. $\overline{\text{CD}}=8,\overline{\text{DH}}=6$ 일 때, 원 O 의 반지름의 길이는?

 $\boxed{5}2\sqrt{3}$

① 3 ② $\sqrt{10}$ ③ $3\sqrt{2}$ ④ 4

 $\overline{\mathrm{DI}} = 4$ \triangle CDI 에서 $(2x)^2 + 4^2 = 8^2$ $\therefore x = 2\sqrt{3}$

15. 다음 그림과 같은 원 O 에서 $\overline{OD}=\overline{OE}=\overline{OF}$ 이고 $\overline{AB}=6\mathrm{cm}$ 일 때, 원 O 의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $12\pi\underline{
m cm}^2$

▶ 답:

 $\overline{\mathrm{OD}} = \overline{\mathrm{OE}} = \overline{\mathrm{OF}}$ 이므로 $\overline{\mathrm{AB}} = \overline{\mathrm{BC}} = \overline{\mathrm{CA}}$

 $\triangle ABC$ 가 정삼각형이므로 $\overline{AB}: \overline{AE}=2: \sqrt{3}$ $\overline{AE} = \frac{\sqrt{3}}{2} \times 6 = 3\sqrt{3} \, (cm)$

정삼각형의 외심은 내심이며, 또 무게중심이므로 $\overline{OA} = \frac{2}{3}\overline{AE} = \frac{2}{3} \times 3\sqrt{3} = 2\sqrt{3} \text{ (cm)}$ (원의 넓이)= $\pi \times \left(2\sqrt{3}\right)^2 = 12\pi \left(\text{cm}^2\right)$