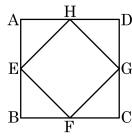
정사각형 ABCD 의 네 변의 중점을 이은 사각형은 어떤 사각형인지 1. 구하는 과정이다. 안에 알맞은 말은?



- 사다리꼴
- ② 평행사변형 ③ 직사각형

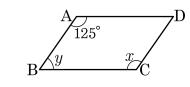
④ 마름모

해설

정사각형

정사각형은 네 변의 길이가 모두 같고, 네 내각이 90°로 모두 같다.

2. 다음 그림과 같이 ∠A = 125°인 □ABCD가 평행사변형이 되도록 하는 ∠x, ∠y의 크기를 구하여라.

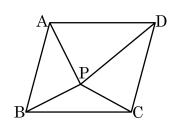


$$\triangleright$$
 정답: ∠ $y = 55_{-}^{\circ}$

해설

$$\angle x = 125$$
°, $\angle y = 180$ ° -125 ° $= 55$ °

다음과 같은 평행사변형 ABCD의 내부에 임의의 한 점 P를 잡았다고 한다. ΔPAD = 40cm², ΔPBC = 25cm² 라고 할 때, 평행사변형 ABCD의 넓이= ()cm²를 구하여라.



 cm^2

답 :
 > 정답 : 130 cm²

해설

내부의 한 점 P에 대하여 $\frac{1}{2}$ \square ABCD = \triangle PAB + \triangle PCD =

 $\triangle PAD + \triangle PBC$ 이다. $\triangle PAD = 40 \text{cm}^2$, $\triangle PBC = 25 \text{cm}^2$ 이므로

 $40 + 25 = \frac{1}{2}$ \square ABCD 이다.

따라서 평행사변형 ABCD의 넓이는 $65 \times 2 = 130 (\text{cm}^2)$ 이다.

- **4.** 마름모의 성질이 <u>아닌</u> 것은?
 - ① 두 대각선의 길이가 같다.
 - ② 이웃하는 두 변의 길이가 같다.
 - ③ 대각선에 의해 대각이 이등분된다.
 - ④ 두 대각선이 서로 다른 것을 수직이등분한다.
 - ⑤ 대각의 크기가 같다.

해설

두 대각선의 길이는 같지 않다.

다음 사각형 중 평행사변형이 아닌 것은?(정답 2개)

 ① 정사각형
 ② 직사각형
 ③ 마름모

 ④ 사다리꼴
 ⑤ 등변사다리꼴

해설

5.

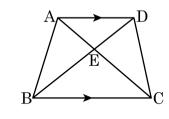
두 쌍의 대변이 각각 평행한 사각형을 평행사변형이라 한다. 따라서 ④, ⑤는 평행사변형이라 할 수 없다. 6. 다음 조건에 알맞은 사각형을 모두 구하면?

대각선이 서로 다른 것을 수직이등분한다.

- ① 마름모, 정사각형
- ② 평행사변형, 마름모
- ③ 직사각형, 마름모, 정사각형
- ④ 등변사다리꼴, 직사각형, 정사각형
- ⑤ 평행사변형, 등변사다리꼴, 마름모, 정사각형

해설

두 대각선이 서로 다른 것을 수직이등분하는 사각형은 마름모, 정사각형이다. 7. 다음 그림의 사각형 ABCD 에서 $\overline{\rm AD}//\overline{\rm BC}$ 이고, $\Delta \rm ABC$ 의 넓이가 $20 {\rm cm}^2$ 이고, $\Delta \rm BEC$ 의 넓이가 $10 {\rm cm}^2$ 일 때, $\Delta \rm DEC$ 의 넓이를 구하여 라.



 cm^2

▷ 정답: 10 cm²

답:

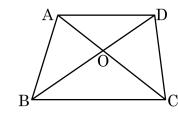
해설

밑변이 동일하고 밑변과 평행한 직선까지의 거리가 같으므로 $\triangle ABC$ 의 넓이와 $\triangle DBC$ 의 넓이는 동일하다.

 $\triangle DBC = 20 \text{cm}^2$

 $\therefore \triangle DEC = \triangle DBC - \triangle BEC = 20 - 10 = 10(\text{cm}^2)$

8. 다음 그림의 $\square ABCD$ 는 $\overline{AD}//\overline{BC}$ 인 사다리꼴이다. 두 대각선의 교점을 O 라 할 때, $\triangle ABC = 50 \text{cm}^2$, $\triangle DOC = 15 \text{cm}^2$ 이다. 이 때, △OBC 의 넓이는?



$$4.55 \text{cm}^2$$
 5.65cm^2

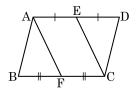
① $25cm^2$

 $3 45 \text{cm}^2$

 $35 \mathrm{cm}^2$

 $\triangle ABC = \triangle DBC$ 이므로 $\triangle ABO = \triangle DOC$ $\triangle OBC = 50 - 15 = 35(cm^2)$

다음 그림과 같은 평행사변형 ABCD 에서 변 AD , 변 BC의 중점을 각각 점 E, F 라 할 때, □AFCE 는 어떤 사각형인가?

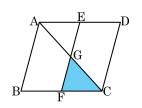


- ① 평행사변형 ② 마름모
 - ③ 직사각형
 ④ 정사각형
 - ⑤ 사다리꼴

해설

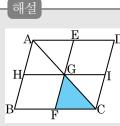
9.

 $\overline{AE} = \overline{FC}$ 이고 $\overline{AE}//\overline{FC}$ 이므로 사각형 AFCE 는 평행사변형이다. 10. 다음 그림의 평행사변형 ABCD 에서 점 E, F 는 각각 변 AD, BC 의 중점이고, 빗금 친 삼 각형의 넓이는 15 cm² 일 때, 평행사변형 ABCD 의 넓이는?



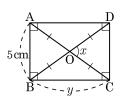
- ① 90 cm^2
- ② 100 cm^2
- $3 110 \text{ cm}^2$

- 4120 cm^2
- \circ 130 cm²



다음 그림에서 삼각형 AGE 와 삼각형 CGF 는 합동이다. 따라서 점 G 는 변 EF 의 중점이다. 점 G 를 지나고 AD 에 평행한 선분 HI 를 그으면 변 EF 와 HI 에 의해 평행사변형은 합동인네 개의 평행사변형으로 나누어진다. 평행사변형의 대각선은 평행사변형의 넓이를 이등분하므로 색칠한 삼각형의 넓이는전체 평행사변형 넓이의 $\frac{1}{8}$ 이다. 따라서 평행사변형의 넓이는 $8\times15=120~(\mathrm{~cm}^2)$ 이다.

11. 다음 그림에서 직사각형 ABCD 가 정사각형이 되기 위한 x, y 의 값을 각각 구하여라.



- 답: _______
- <u>cm</u>
- \triangleright 정답: ∠ $x = 90 ^\circ$
- \triangleright 정답: y = 5 $\underline{\text{cm}}$

해설

직사각형이 정사각형이 될 조건은 두 대각선이 이루는 각이 90°이므로 $\angle x = 90$ ° 이웃한 두변의 길이가 같으므로 y = 5(cm) 12. 다음은 여러 가지 사각형의 정의를 나타낸 것이다. 다음 중 옳지 않은 것은?

H: 한 쌍의 대변이 평행한 사각형

V: 두 밑각의 크기가 같은 사다리꼴 P: 두 쌍의 대변이 각각 평행한 사각형

0: 네 각의 크기가 모두 같은 사각형 R: 네 변의 길이가 모두 같은 사각형

S: 네 변의 길이가 같고. 네 내각의 크기가 같은 사각형

① $S \vdash R \circ \Gamma$. ② $S \vdash Q \circ \Gamma$. ③ $Q \vdash V \circ \Gamma$. (4)R은 Q이다.

⑤ P는 H이다.

해설

H (사다리꼴): 한 쌍의 대변이 평행한 사각형 V (등변사다리꼴) : 두 밑각의 크기가 같은 사다리꼴

P (평행사변형): 두 쌍의 대변이 각각 평행한 사각형 Q (직사각형) : 네 각의 크기가 모두 같은 사각형

R (마름모): 네 변의 길이가 모두 같은 사각형

S (정사각형): 네 변의 길이가 같고, 네 내각의 크기가 같은 사각형

(4): $R \not\subset O$

13. 다음 보기의 사각형 중에서 각 변의 중점을 이어 만든 사각형이 마름 모가 되는 것을 모두 골라라.

 보기

 ③ 평행사변형
 ⑤ 사다리꼴

 ⑥ 등변사다리꼴
 @ 직사각형

 ⑥ 정사각형
 셸 마름모

답:

답:

답:

▷ 정답 : □

▷ 정답: ②

▷ 정답: □

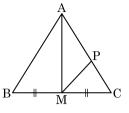
해설

평행사변형의 중점을 이어 만든 사각형은 평행사변형이 된다. 사다리꼴의 중점을 이어 만든 사각형은 평행사변형이 된다. 등변사다리꼴의 중점을 이어 만든 사각형은 <u>마름모</u>가 된다. 직사각형의 중점을 이어 만든 사각형은 <u>마름모</u>가 된다. 정사각형의 중점을 이어 만든 사각형은 정사각형이 된다. 따라서 마름모가 된다.

마름모의 중점을 이어 만든 사각형은 직사각형이 된다.

 $\overline{PC}=3:2$ 이다. $\triangle ABC=40\,\mathrm{cm}^2$ 일 때, $\triangle APM$ 의 넓이는?

14. 다음 그림에서 점 M은 \overline{BC} 의 중점이고 \overline{AP} :



 $12\,\mathrm{cm}^2$

 $\bigcirc 4 \, \mathrm{cm}^2$

(4) 16 cm²

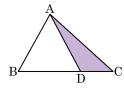
- 2 8 cm^2
- $\odot 20 \, \text{cm}^2$

해설

ΔABM과 ΔAMC의 높이와 밑변의 길이가 같으므로, 두 삼각형 의 넓이는 같다.

$$\triangle AMC = 20 \text{cm}^2 \text{ , } \triangle AMP = 20 \times \frac{3}{5} = 12 \text{ (cm}^2)$$

15. 다음 △ABC 의 넓이는 30 cm² 이다. BD 의 길이가 DC 의 길이보다 2배 길다고 할 때,
 △ADC 의 넓이를 구하여라.



$$\underline{\mathrm{cm}^2}$$

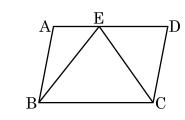
해설

 $\overline{\rm DC}$ 의 길이는 $\overline{\rm BD}$ 의 길이의 $\frac{1}{2}$ 이므로 $\overline{\rm BC}$ 의 길이의 $\frac{1}{3}$ 이 된다.

그러므로 넓이도 삼각형 ABC 의 넓이의 $\frac{1}{3}$ 이 된다.

따라서 $\triangle ADC$ 의 넓이는 $10 \, \mathrm{cm}^2$ 이다.

16. 다음 그림과 같은 평행사변형 ABCD에서 \overline{AE} : \overline{DE} = 2 : 3이고 $\triangle ABE = 10 \text{cm}^2$ 일 때, $\triangle EBC$ 의 넓이는?



① $10cm^2$

② $12cm^2$

 $3 15 \text{cm}^2$

 $40 \text{ } 20 \text{ cm}^2$

 $25 \mathrm{cm}^2$

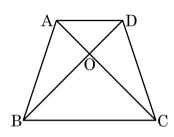
 $\triangle ABE + \triangle DCE = \frac{1}{2} \square ABCD$

 $\triangle ABE : \triangle DCE = 2 : 3$

 $\triangle DCE = 15(cm^2)$

 $\therefore \triangle EBC = \frac{1}{2} \square ABCD = 25(cm^2)$

17. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 $\overline{OA}:\overline{OC}=1:2$ 이다. $\Box ABCD$ 의 넓이가 36 일 때, $\triangle BCO$ 의 넓이를 구하여라.



▶ 답:

▷ 정답: 16

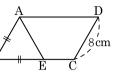
(ΔAOD의 넓이) = A 라 하자.

 $\triangle AOD : \triangle COD = 1 : 2$ 이므로 A: $\triangle COD = 1 : 2$ $\therefore \triangle COD = 2A$

이때 $\triangle ABD = \triangle ACD$ 이므로

△ABO = △COD = 2A 또, △ABO : △BCO = 1 : 2 이므로 2A : △BCO = 1 : 2 ∴ △BCO = 4A

□ABCD = A + 2A + 2A + 4A = 36 ∴ A = 4 따라서 △BCO = 4A = 16 이다. 18. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle A: \angle B=2:1$ 이다. $\overline{AB}=\overline{BE}$ 일 때, \overline{AE} 의 길이를 구하여라.



 $^{\mathrm{cm}}$

$$\angle A = 180^{\circ} \times \frac{2}{3} = 120^{\circ}$$

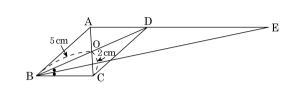
$$\angle B = 180^{\circ} \times \frac{1}{3} = 60^{\circ}$$

$$\overline{\mathrm{AB}} = \overline{\mathrm{BE}}$$
 이므로

 $\angle BAE = \angle BEA = (180^{\circ} - 60^{\circ}) \div 2 = 60^{\circ}$ ∴ △ABE 는 정삼각형이다.

$$\therefore \overline{AE} = \overline{AB} = 8 \text{ (cm)}$$

19. 다음과 같은 평행사변형 ABCD에서 $\angle DBC$ 의 이등분선과 \overline{AD} 의 연장선의 교점을 E라 할 때, \overline{DE} 의 길이와 \overline{OA} 의 길이의 합을 구하여라.



cm

평행사변형의 대각선이 서로 다른 것을 이등분하므로

➢ 정답 : 12 cm

답:

 $\overline{\mathrm{OA}} = \overline{\mathrm{OC}} = 2(\,\mathrm{cm})$ 또한, $\overline{\mathrm{OD}} = \overline{\mathrm{OB}} = 5(\,\mathrm{cm})$

AE // BC 이므로 ∠EBC = ∠BED(엇각) ∠EBC = ∠EBD 이므로 ∠EBD = ∠BED △DBE가 이등변삼각형이므로

 $\overline{DE} = \overline{DB} = 5 + 5 = 10(\text{ cm})$

따라서 \overline{DE} 의 길이와 \overline{OA} 의 길이의 합은 $2+10=12(\,\mathrm{cm})$ 이다.

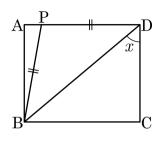
20. 다음 중 □ABCD 가 평행사변형인 것은? (단, 점 O 는 대각선의 교점이다.)

$$\bigcirc$$
 \angle A = 110°, \angle B = 70°, \angle C = 110°

- ② $\overline{AB} = \overline{BC} = 4 \text{ cm}, \overline{CD} = \overline{DA} = 6 \text{ cm}$
 - $\overline{AB} / \overline{CD}, \overline{AB} = 6 \text{ cm}, \overline{CD} = 5 \text{ cm}$
 - $\textcircled{4} \overline{AB} / / \overline{CD}, \overline{AB} = 4 \text{ cm}, \overline{BC} = 4 \text{ cm}$
 - \bigcirc $\overline{OA} = 5 \text{ cm}, \overline{OB} = 5 \text{ cm}, \overline{OC} = 3 \text{ cm}, \overline{OD} = 3 \text{ cm}$

① 두 쌍의 대각의 크기가 같아 평행사변형이다.

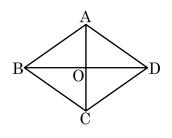
21. 다음 그림의 직사각형에서 $\angle ABP = 10^{\circ}$ 일 때, $\angle x$ 의 크기는?



② 30° ③ 40°

(5) 60°

22. 다음 중 마름모 ABCD가 정사각형이 되기 위한 조건은?



① $\overline{AC} \perp \overline{BD}$

 \bigcirc $\overline{AC} = \overline{BD}$

 $\overline{3}$ $\overline{AB} = \overline{BC}$

 $\textcircled{4} \ \overline{\mathrm{BO}} = \overline{\mathrm{DO}}$

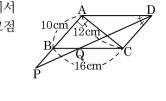
 \bigcirc $\overline{AD}//\overline{BC}$

해설

마름모의 대각선은 서로 다른 것을 수직이등분한다. 정사각형의 두 대각선은 길이가 같고, 서로 다른 것을 수직 이등분한다.

 $\therefore \ \overline{\mathrm{AC}} = \overline{\mathrm{BD}}$

23. 다음 그림과 같은 평행사변형 ABCD 에서
 ∠D 의 이등분선과 AB 의 연장선과의 교점을 P 라고 할 때, △DQC 의 넓이는?



- \bigcirc 35cm²
- ② 37.5cm^2
- 38cm^2
- 40cm^2

 $\angle ADQ = DQC$ (엇각), $\overline{QC} = \overline{CD} = 10 \text{ cm}$

 \bigcirc 60cm²

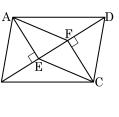
 \Box ABCD 에서 밑변을 \overline{BC} 로 볼 때, 높이를 x라고 하면 $10 \times 12 =$

$$16x, x = 7.5 \text{ (cm)}$$

$$\therefore \triangle DQC = \frac{1}{2} \times 10 \times 7.5 = 37.5 \text{ (cm}^2)$$

 $\overline{AB} = \overline{CD}$

것은?



①
$$\overline{AB} = \overline{DC}$$
 ② $\angle ABE = \angle CDF$

△ABE 와 △CDF 에서 ∠AEB = ∠CFD = 90°

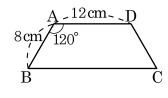
ABE = ZCDF (엇각)

∴ △ABE ≡ △CDF (RHA 합동)

 $\therefore \overline{AE} // \overline{CF}, \overline{AE} = \overline{CF}$

24. 다음 그림과 같이 평행사변형 ABCD 의 꼭

짓점 A, C 에서 대각선 BD 에 내린 수선의 발을 각각 E, F 라 할 때, 다음 중 옳지 않은 **25.** 다음 그림과 같은 등변사다리꼴 ABCD 에서 $\overline{AB}=8\,\mathrm{cm}$, $\overline{AD}=12\,\mathrm{cm}$, $\angle A=120^\circ$ 일 때, $\Box ABCD$ 의 둘레의 길이를 구하여라.



cm

답:> 정답: 48 cm