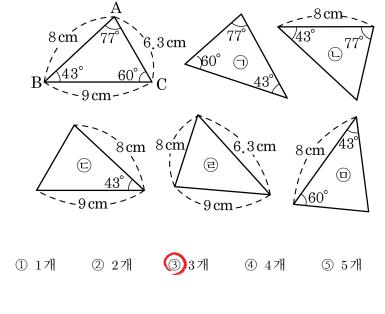

그림의 △ABC에서 ∠C의 대변의 길이를 1. $a\,\mathrm{cm},\;\overline{\mathrm{BC}}$ 의 대각의 크기를 $b^{\,\circ}$ 라 할 때, a+b의 값은?

 \bigcirc 38

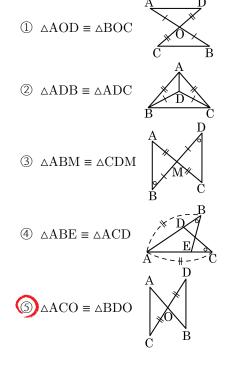
② 58

3 61


493

⑤ 96

a = 3, b = 180 - (55 + 35) = 90


 $\therefore a + b = 3 + 90 = 93$

$\mathbf{2}$. 다음 그림에서 △ABC와 합동인 삼각형의 개수는?

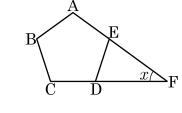
 \triangle ABC와 합동인 삼각형은 \bigcirc , \bigcirc , @이다.

3. 다음 그림에서 서로 합동이 될 수 <u>없는</u> 것은?

⑤ $\overline{\mathrm{CO}} = \overline{\mathrm{OD}}, \ \angle \mathrm{AOC} = \angle \mathrm{BOD}$ 의 조건으로 합동이라고 말할 수 없다.

4. 십각형의 한 꼭짓점에서 대각선을 그었을 때 생기는 삼각형의 개수는?

① 6개 ② 7개 ③ 8개 ④ 9개 ⑤ 10개


해설 10-2=8

5. 육각형의 외각의 크기의 합은?

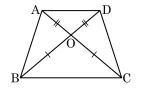
① 300° ② 340° ③ 360° ④ 380° ⑤ 400°

다각형의 외각의 크기의 합은 항상 360°이다.

다음 그림과 같이 정오각형 ABCDE 에서 변 AE, CD 의 연장선이 **6.** 만나서 생기는 ∠x 의 크기는?

① 28° ② 30° ③ 32° ④ 34°

해설


정오각형의 한 외각의 크기는 $\frac{360^\circ}{5}=72^\circ$ 이므로 Δ EDF 에서 \angle F = 180° – 72° – 72° = 36° 이다.

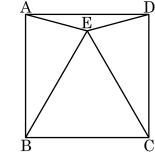
- 7. $\angle A$ 가 주어졌을 때, $\triangle ABC$ 가 하나로 결정되기 위해 더 필요한 조건이 <u>아닌</u> 것을 모두 고르면? (정답 2 개)
 - $\begin{picture}(4){\hline AB}{\ ,} \begin{picture}(4){\hline AB}{\ ,} \begin{picture}(4){\hline AB}{\ ,} \begin{picture}(4){\hline CA}{\ }\begin{picture}(4){\hline CA}{\ }\begin{pic$
- ③ ∠B , ∠C

해설

③ 세 각의 크기가 같은 삼각형은 무수히 많다.

④ $\angle A$ 는 \overline{AB} , \overline{BC} 의 끼인각이 아니다. \overline{AB} , \overline{BC} 의 끼인각은 $\angle B$ 이다.

③ ∠AOD = ∠BOC


① $\angle AOB = \angle DOC$

- ② $\triangle AOB \equiv \triangle DOC$ ④ $\overline{AB} = \overline{AD}$
- \bigcirc $\triangle ABC \equiv \triangle DCB$

 $4 \overline{AB} \neq \overline{AD}$

해설

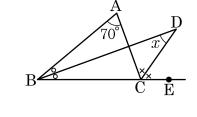
9. 다음 그림에서 $\square ABCD$ 가 정사각형이고 $\triangle EBC$ 가 정삼각형이면 $\Delta \text{EAB} \equiv \Delta \text{EDC}$ 이다. 이 때, 사용된 삼각형의 합동조건은?

① SSS 합동 ④ AAA 합동


②SAS 합동 ③ ASA 합동 ⑤ RHS 합동

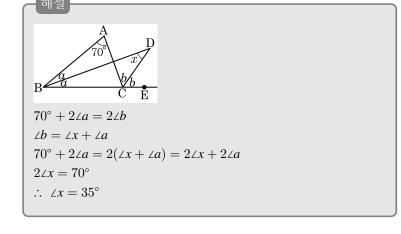
해설

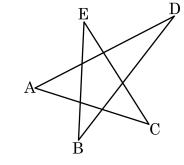
 $\square ABCD$ 가 정사각형이므로 $\overline{AB} = \overline{DC}$


 $\Delta \mathrm{EBC}$ 가 정삼각형이므로 $\overline{\mathrm{EB}} = \overline{\mathrm{EC}}$, $\angle \mathrm{EBC} = \angle \mathrm{ECB} = 60^\circ$ 따라서 $\angle ABE = 90^{\circ} - \angle EBC = 30^{\circ}$ $\angle DCE = 90^{\circ} - \angle ECB = 30^{\circ}$ 따라서 SAS 합동이다.

10. 다음 그림에서 $\angle x$ 의 값은?

 $6x + 13^{\circ} = 2x + 11^{\circ} + 180^{\circ} - (10x + 10^{\circ})$ $= 181^{\circ} - 8x$ $\therefore \angle x = 12^{\circ}$


11. 다음 그림에서 $\angle x$ 의 크기는?

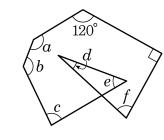

① 50° ② 45° ③ 40°

435°

⑤ 30°

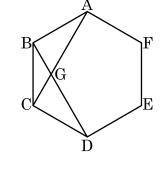
12. 다음 그림에서 $\angle A=45^\circ$, $\angle B=35^\circ$, $\angle C=40^\circ$, $\angle E=35^\circ$ 일 때, $\angle D$ 의 크기는?

① 25° ② 30° ③ 35° ④ 40° ⑤ 45°


삼각형의 외각의 성질에 의해 45° + 35° + 40° + ∠D° + 35° = 180° 이므로

∠D = 25° 이다.

해설


13. 다음 그림에서 $\angle a + \angle b + \angle c + \angle d + \angle e + \angle f$ 의 값은?

① 500° ② 510° ③ 720° ④ 900° ⑤ 1080°

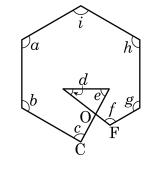
파라서 $\angle a + \angle b + \angle c + \angle d + \angle e + \angle f + 120^\circ$ 이다.

14. 다음 정육각형에 대한 설명이다. 옳지 <u>않은</u> 것은?

- ∠AGB 는 60° 이다.
 △ABC 는 이등변삼각형이다.
- ③모든 대각선의 길이는 같다.
- ④ 한 내각의 크기는 120° 이다.
- ⑤ 외각의 크기의 합은 360° 이다.

③ 모든 대각선의 길이가 같은 것은 아니다.

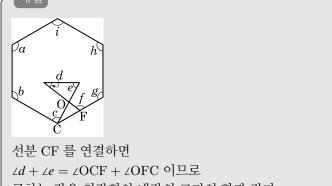
해설

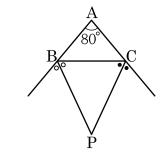

15. 대각선의 총수가 54 개인 다각형의 꼭짓점의 수를 구하면?

① 8 개 ② 9 개 ③ 10 개 ④ 11 개 ⑤ 12 개

해설 n 각형이라 하면 $\frac{n(n-3)}{2}=54$

 $n(n-3) = 108 = 12 \times 9$ ∴ n = 12 (7 \parallel)


16. 다음 그림에서 $\angle a + \angle b + \angle c + \angle d + \angle e + \angle f + \angle g + \angle h + \angle i$ 의 크기는?


① 600° ② 700° ③ 800°

4900°

⑤ 1000°

구하는 각은 칠각형의 내각의 크기의 합과 같다. ∴ 180°×(7-2) = 900° 17. 다음 그림의 $\triangle ABC$ 에서 \overline{BP} 는 $\angle B$ 의 외각의 이등분선이고, \overline{CP} 는 $\angle C$ 의 외각의 이등분선일 때, $\angle BPC$ 의 크기를 구하면?

① 50° ② 52° ③ 54° ④ 56° ⑤ 58°

∠CBP = a, ∠BCP = b 라 하면 외각의 합은 360° 이므로 2a + 2b + 100° = 360°

 $2a + 2b + 100^{\circ} = 360^{\circ}$ $\therefore a + b = 130^{\circ}$

 $\therefore \angle BPC = 180^{\circ} - (a+b) = 180^{\circ} - 130^{\circ} = 50^{\circ}$

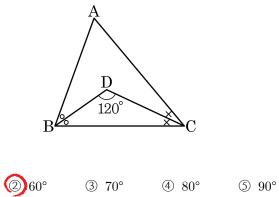
18. 다음은 오각형의 내각의 크기의 합을 구하는 과정을 나타낸 것이다. \bigcirc ~ \bigcirc 에 들어갈 것으로 알맞지 <u>않은</u> 것은?

> 다음 그림과 같이 오각형의 한 꼭짓점에서 그을 수 있는 대각 선의 개수는 (🕤) 개이고, 이 때 (🖸) 개의 (🖻) 으로 나누어 진다. 따라서, 오각형의 내각의 크기의 합은 (@) × (©) = (@)

④ ② : 120° ⑤ □ : 540°

① $\bigcirc : 2$ ② $\bigcirc : 3$ ③ $\bigcirc : 삼각형$

오각형의 한 꼭짓점에서 그을 수 있는 대각선의 개수는 2 개이고,


이때 3 개의 삼각형으로 나누어진다. 따라서, 오각형의 내각의 크기의 합은 $180^{\circ} \times 3 = 540^{\circ}$ 이다.

- **19.** 다음 중 주어진 세 변으로 삼각형을 작도할 수 $\underline{\text{없는}}$ 것은?
 - 1 4,6,9
 - ② 6,8,10 ④ 5,5,5 ⑤ 8,8,12
- ③10, 12, 25

가장 긴 변의 길이는 나머지 두 변의 길이의 합보다 작아야 한다.

25 > 10 + 12

20. 다음 그림의 $\triangle ABC$ 에서 $\angle B$ 와 $\angle C$ 의 이등분선의 교점을 D 라고 할때, $\angle BAC$ 의 크기는?

① 50° ②60° ③ 70° ④ 80° ⑤ 90

△DBC 에서

해설

 $\angle DBC + \angle DCB = 180^{\circ} - 120^{\circ} = 60^{\circ}$ $\angle B + \angle C = 2(\angle DBC + \angle DCB) = 120^{\circ}$

 $\therefore \angle BAC = 180^{\circ} - 120^{\circ} = 60^{\circ}$