두 조건 p:|x-1|=2 , $q:x^2+2x+1=0$ 에서 p 는 q 이기 위한 어떤 조건인지 구하여라.

▶ 답: 조건

다음 조건p 는 조건q 이기 위한 어떤 조건인지 구하여라.(단,a,b 는 실수)

(i) p: a,b 는 유리수, q: a+b,ab 는 유리수
(ii) p: x 는 3의 배수, q: x 는 6의 배수

3. 다음에서 조건 p가 조건q 이기 위한 필요조건이고 충분조건은 아닌 것을 골라 기호로 써라. (단,a,b 는 실수)

©
$$p:a^2=b^2 q:a=b$$

☑ 답:

4. 다음 보기 중에서 두 조건 p,q에 대하여 p가 q이기 위한 필요충분조 건인 것을 모두 고른 것은?

보기 \bigcirc $p:A\cap B=A, q:A\subset B$ \bigcirc $p: x > 1 \circ] \exists y > 1, q: x + y > 2$ \bigcirc p: x + |x| = 0, q: x < 0

① ① ② © ④ ①, © ③ ①, ©, ©

두 조건 $p(x): |x-a| \le 1$, q(x): -1 < x < 2, $3 \le x \le 5$ 에 대하여 p(x) 가 q(x) 이기 위한 충분조건일 때, 정수 a 의 개수는?

① 5개 ② 4 개 ③ 3 개 ④ 2 개 ⑤ 1개 $p: -1 \le x \le 1$ 또는 $x \ge 3$, $q: x \ge a$ 에 대하여 q 는 p 이기 위한 필요조건일 때. 정수 a 의 최댓값을 구하여라.

≥ 답:

두 조건 p: -1 < x < 3, q: a-1 < x < a+5 에 대하여 $p \vdash a$ 이기 위한 충분조건이 되도록 하는 a 의 최댓값과 최솟값의 합은? (2) -1

- 두 조건 p, q 를 만족하는 집합을 각각 $P = \{a+1, 2\}, Q =$ $\{3, 5, 3a - 4\}$ 라 할 때, p 는 q 이기 위한 충분조건이다. 이때, 상 수 a 의 값은?
 - ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

부등식 $2^{50} > 5^{10n}$ 을 만족하는 자연수 n 의 갯수를 구하여라. > 답:

10. x > 0, y > 0일 때, $\left(3x + \frac{1}{y}\right) \left(\frac{1}{x} + 12y\right)$ 의 최솟값을 구하여라.

▶ 답:

11. x > 0, y > 0일 때, $\left(2x + \frac{1}{x}\right) \left(\frac{8}{y} + y\right)$ 의 최솟값을 구하여라.

▶ 답:

12. a > 0, b > 0일 때, $(a + b) \left(\frac{4}{a} + \frac{9}{b}\right)$ 의 최솟값을 구하면?

① 13 ② 24 ③ 25 ④ 28 ⑤ 36

13. 두 실수 x, y의 제곱의 합이 10일 때, x + 3y의 최댓값을 M, 최솟값을 m이라 한다. 이 때, M-m의 값을 구하여라. > 답:

①
$$xy \ge 0$$
 이면 $x \ge 0$ 또는 $y \ge 0$

②
$$x + y \ge 0$$
 이면 $x \ge 0$ 이고 $y \ge 0$

③
$$x \ge y$$
 이면 $\frac{1}{x} \le \frac{1}{y}$

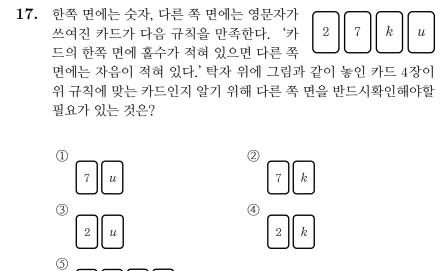
x < 2 이면 |x - 1| < |x - 3|

①
$$x \le 2$$
 이면 $|x-1| \le |x-3|$
③ $a > 0$ 이고 $b > 0$ 이면 $a^2 + b^2 > 0$

15. 두 조건 p, q가 p:|x| < a, $q:|x-1| \ge 3$ 과 같이 주어져 있다. 명제 $\sim p \to q$ 가 참일 때, 양수 a의 범위를 구하면?

① $0 < a \le 4$ ② a > 4 ③ $a \ge 4$

(5) $2 \le a \le 4$


(4) a > 2

16. 네 개의 조건 p, q, r, s에 대하여 $q \Rightarrow \sim s$, $\sim r \Rightarrow p$ 라 한다. 이로부터 $s \Rightarrow r$ 라는 결론을 얻기 위해 다음 중 필요한 것은?

(4) $r \Rightarrow s$

 \bigcirc $\sim s \Rightarrow q$

 $\ \ \,$ $\ \ \, r\Rightarrow q$

18. 다음은 명제 ' $3m^2 - n^2 = 1$ 을 만족하는 (가)'에 대한 증명에서 중간 부분을 적은 것이다.

... (생략) ... m, n이 정수이고 $3m^2 = n^2 + 1$ 이므로, $n^2 + 1$ 은 3의 배수이다.
한편, 정수 n이 어떤 정수 k에 대하여 n = 3k이면 $n^2 = (3k)^2 = 9k^2 = 3(3k^2)$ n = 3k + 1이면 $n^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$ n = 3k + 2 이면 $n^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$ 이므로 n^2 을 3으로 나눈 나머지는 0 또는 1이다.
따라서 $n^2 + 1$ 을 3으로 나눈 나머지는 1 또는 1이다.
(생략) ...

m. n 중 적어도 하나는 정수이다.

다음 중 위의 (가)에 가장 알맞은 것은?

② *m*. *n* 중 어느 것도 정수가 아니다.

③ *m. n*이 모두 정수인 해가 적어도 하나 있다.

④ m, n이 모두 정수인 해가 오직 하나 있다.

⑤ *m*, *n* 이 모두 정수인 해는 없다.

19. 다음 중 p가 q이기 위한 충분조건인 것은 ?

① p: a+b > 0, ab > 0, q: a > 0, b > 1

⑤ $p: a+b \ge 2, ab \ge 1, Q: a \ge 1, b \ge 1$

- - - - ③ p: a+b>2, $q: a \ge 1$ 또는 $b \ge 1$ (a, b)는 실수)

 - - 4 p: ab = 0, |a| + |b| = 0

전체 집합 U 의 두 부분집합 A, B 에 대하여 $(A - B)^c = B - A$ 가 성립할 필요충분조건을 구하면?

 \bigcirc $A = B^c$

① $A \cap B = \emptyset$ ② $A \cup B = U$ ③ $A \subset B^c$

 $(4) A^c \cup B = U$

- **21.** 세 조건 p,q,r를 만족하는 진리집합이 각각 $P = \{x \mid x \le -2, 1 \le x \le 5\}$, $Q = \{x \mid x \le a\}$, $R = \{x \mid x \le b\}$ 이다. $p \vdash q$ 이기 위한 필요조건이고,
- r이기 위한 충분조건이 되도록 상수a,b에 대한 a의 최댓값을 M,b의 최솟값을 m이라 할 때.M+m의 값을 구하시오.
- 77.4.
 - **>>** 답:

22. 두 조건 p, q를 만족하는 집합을 각각 P, Q라 하자. $\sim q$ 가 p이기 위한 필요조건일 때, 다음 중 옳은 것은?

① $P^c \subset Q$ ② $Q \subset P$ ③ $Q - P = \phi$

23. 세 조건 p, q, r 에 대하여 $\sim p \Rightarrow q$, $r \Rightarrow \sim q$ 일 때, 조건 p 가 r 이기 위한 필요충분조건이려면 다음 중 어떤 조건이 더 필요한가?

① $p \Rightarrow q$	② $q \Rightarrow r$	$\Im p \Rightarrow r$	

① $p \Rightarrow q$ ② $q \Rightarrow r$ ④ $\sim q \Rightarrow p$ ⑤ $\sim r \Rightarrow p$ **24.** a > 1일 때 $b = \frac{1}{2} \left(a + \frac{1}{a} \right), \ c = \frac{1}{2} \left(b + \frac{1}{b} \right)$ 이라 한다. a, b, c의 대소 관계로 옳은 것은?

① a > b > c ② a > c > b ③ b > c > a

 $\textcircled{4} \ b > a > c \qquad \qquad \textcircled{5} \ c > b > a$

25. 0 < a < b, a + b = 1일 때, 다음 네 수 또는 식의 대소를 비교한 것 중 잘못된 것은?

①
$$\sqrt{b} - \sqrt{a} < \sqrt{b-a}$$
 ② $\sqrt{b} - \sqrt{a} < \sqrt{a} + \sqrt{b}$

② $\sqrt{b} - \sqrt{a} < \sqrt{a} + \sqrt{b}$

(4) $\sqrt{b-a} < 1$

1, $\sqrt{a} + \sqrt{b}$, $\sqrt{b} - \sqrt{a}$, $\sqrt{b-a}$

 $\Im \sqrt{a} + \sqrt{b} < 1$

 \bigcirc $\sqrt{b-a} < \sqrt{a} + \sqrt{b}$

26. *x*, *y* 가 실수일 때, 다음 중 절대부등식이 <u>아닌</u> 것을 모두 고른 것은?

 $a^2 + b^2 + c^2 - ab - bc$

$$\begin{vmatrix} a^2 + b^2 + c^2 - ab - bc - ca \\ = \frac{1}{2} \{ (a - b)^2 + (b - c)^2 + (c - a)^2 \}$$

27. 다음 등식을 이용하여 증명할 수 있는 부등식은?

①
$$|a+b+c| \le |a|+|b|+|c|$$

②
$$\sqrt{a^2 + b^2 + c^2} \le |a| + |b| + |c|$$

3
$$\sqrt{3}\sqrt{a^2+b^2+c^2} \ge |a+b+c|$$

a > 0, b > 0일 때, 다음 네모 속에서 옳은 것은 모두 몇 개인가?

I.
$$1 + a > \sqrt{1 + 2a}$$

II. $\sqrt{2(a+b)} \ge \sqrt{a} + \sqrt{b}$

III. $a + \frac{1}{a} \ge 2$

IV. $\frac{2ab}{a+b} \le \sqrt{ab}$

V. $(a+b)\left(\frac{2}{a} + \frac{2}{b}\right) \ge 4$

VI. $(2a+b)\left(\frac{8}{a} + \frac{1}{b}\right) \ge 25$

29. $a^2+b^2=2$, $x^2+y^2=2$ 일 때, ax+by의 최댓값과 ab+xy의 최댓값의 합은?(단, 문자는 모두 실수이다.)

30. 세 양수 a, b, c가 abc=1을 만족할 때, 이 사실로부터 추론할 수 있는 것을 보기에서 모두 고르면?

I.
$$a+b+c \ge 3$$

II. $a^2+b^2+c^2 \ge 3$
III. $ab+bc+ca \ge 3$
IV. $(a+1)(b+1)(c+1) \ge 8$

④ I, Ⅲ, Ⅳ ⑤

① I, I

π

② I, **I**I

II, IV

⑤ I, Ⅱ, Ⅲ, Ⅳ

반지름이 r(cm) 인 원에 내접하는 직사각형의 넓이의 최댓값을 구하 며?

①
$$2r(\text{cm}^2)$$
 ② $r^2(\text{cm}^2)$ ③ $2r^2(\text{cm}^2)$ ④ $\sqrt{2}r^2(\text{cm}^2)$ ⑤ $\frac{r^2}{2}(\text{cm}^2)$

- **32.** 제곱의 합이 일정한 두 실수 a, b에 대하여 a + 2b가 최대일 때, a와 b사이의 관계는?
 - b = 2a ② a = 2b ③ a = b

b = 2a ② a = 2b ③ a = b② $b^2 = a$

33. $x+y+z=4, x^2+y^2+z^2=6$ 을 만족하는 실수 x, y, z에 대하여 x가 취할 수 있는 최댓값을 M, 최솟값을 m 이라 할 때, $\frac{M}{m}$ 의 값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5