나타내면?
① 0.2a 원
② 0.8a 원
③ 20a 원
④ 80a 원
⑤ 8a 원

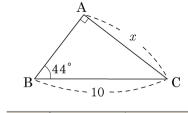
1.

정가가 a원인 물건을 $20\,\%$ 할인하여 구입할 때, 지불할 금액을 식으로

해설 a - 0.2a = 0.8a(원)

2. 다음 그림은 직선 $x - \sqrt{3}y + 3 = 0$ 의 그래프이다. 이때, 2θ 의 크기를 구하면?

O


①30° 2 40° 3 45° 4 50°

⑤ 60°

$$y = \frac{\sqrt{3}}{3}x + \sqrt{3}$$

$$\therefore 기울기 : \frac{\sqrt{3}}{3}$$

$$($$
기울기 $)=\tan\theta$ 이므로 $\tan\theta=\frac{\sqrt{3}}{3},$
 $\therefore \angle\theta=30^\circ$

다음 삼각비의 표를 보고 △ABC 에서 *x* 의 값을 구하면? 3.

ゴエ	5111	COS	tan
44	0.6947	0.7193	0.9657
45	0.7071	0.7071	1.0000
46	0.7193	0.6947	1.0355

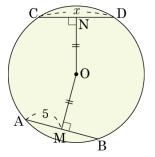
③ 7.071 **2**6.947 $\bigcirc 10.355$

① 1.022

 $x = 10 \times \sin 44^{\circ} = 10 \times 0.6947 = 6.947$

4. 다음 그림과 같은 직각삼각형 ABC 에서 $\overline{\rm AC}$ 의 길이를 구하여라. (단, $\tan 78^\circ = 4.7046$)

A 78 2 2 C

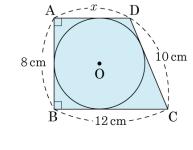

답:

▷ 정답: 94.092

 $\overline{AC} = \overline{BC} \tan 78^{\circ} = 20 \times 4.7046 = 94.092$

해설

5. 다음 그림에서 x 의 값을 구하여라.


 ► 답:

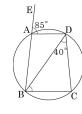
 ► 정답: x = 10

원의 중심으로부터 같은 거리에 있는 현의

길이는 같으므로 ∴ *x* = 5 × 2 = 10

6. 다음 그림에서 □ABCD 는 원 O 의 외접사각형이다. 이 때, x 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$


정답: 6 cm

▶ 답:

해설

 $\overline{\mathrm{AD}} + \overline{\mathrm{BC}} = \overline{\mathrm{AB}} + \overline{\mathrm{CD}}$ 이므로 x+12=8+10 .: $x=6 \mathrm{(cm)}$

7. 다음 그림에서 $\angle EAD = 85^{\circ}$, $\angle BDC = 40^{\circ}$ 일 때, $\angle DBC$ 의 크기를 구하면?

① 50°

② 55°

 360° 465°

⑤ 70°

 $\angle EAD = \angle DCB$

해설

 $\therefore \angle DCB = 85^{\circ}$

 $\therefore \angle DBC = 180^{\circ} - 40^{\circ} - 85^{\circ} = 55^{\circ}$

8. 두 일차방정식 2(2x-13) = 3(x-7)과 ax+3 = -x-7 의 해가 같을 때, a 의 값을 구하여라.

▶ 답:

▷ 정답: -3

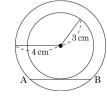
4x - 26 = 3x - 21

해설

 $\begin{vmatrix} 4x - 3x = -21 + 26 \\ \therefore x = 5 \end{vmatrix}$

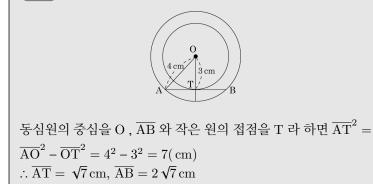
ax + 3 = -x - 7 에 x = 5 를 대입하면

5a + 3 = -5 - 75a = -12 - 3 = -15

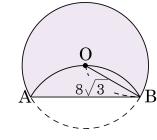

 $\therefore a = -3$

- 9. 모임에서 회비를 내는 1000 원씩 내면 목표 금액에서 5000 원이 모자라 고, 1500 원씩 내면 1000 원이 남는다. 이 모임의 인원수를 구하여라.
 - <u>명</u> ▶ 답: ▷ 정답: 12명

인원수를 x명이라고 하면 1000x + 5000 = 1500x - 1000

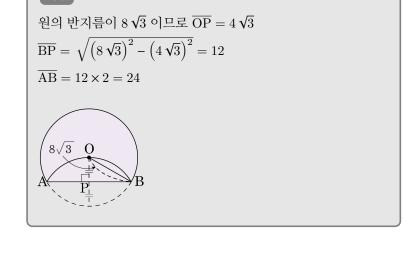

 $\therefore x = 12$

10. 다음 그림에서 두 동심원의 반지름의 길이는 각각 3 cm, 4 cm이고 현 AB가 작은 원의 접선일 때, AB 의 길이는?

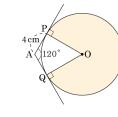


① $\sqrt{7}$ cm

 $\bigcirc 2\sqrt{7}\,\mathrm{cm}$ $\bigcirc 4\sqrt{7}\,\mathrm{cm}$ 4 $6\sqrt{7}$ cm 5 $3\sqrt{7}$ cm



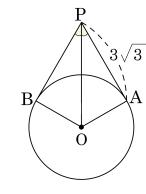
11. 다음 그림에서 반지름의 길이가 $8\sqrt{3}$ cm 인 원 O 에서 호가 원의 중심을 지나도록 \overline{AB} 을 접는 선으로 하여 접었을 때, \overline{AB} 의 길이를 구하여라.



⑤ 26

① $12\sqrt{2}$ ② $12\sqrt{3}$ ③ $24\sqrt{3}$ ④ 24

12. 다음 그림에서 \overrightarrow{AP} , \overrightarrow{AQ} 는 원 O 의 접선이고, 점 P, Q 는 원 O 의 접점이다. $\overrightarrow{AP} = 4 \text{cm}$, $\angle PAQ = 120^\circ$ 일 때, 색칠된 부분의 넓이를 구하여라.

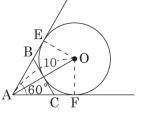


 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $40\pi \mathrm{cm}^2$

답:

 $\overline{\mathrm{OP}} = \sqrt{3} \times \overline{\mathrm{AP}} = 4\sqrt{3} (\mathrm{cm})$ (부채꼴의 넓이) = $\pi \times (4\sqrt{3})^2 \times \frac{300^\circ}{360^\circ} = 40\pi (\mathrm{cm}^2)$ 13. 점 A, B 는 원 O 의 접점이고 $\angle APB = 60^\circ$, $\overline{PA} = 3\sqrt{3}$ 일 때, \overline{PO} 의 길이는?

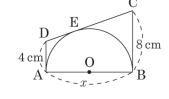

1)6

2 7 3 8

4 9 **5** 10

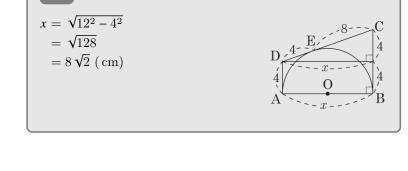
△POA ≡ △POB (RHS 합동) 따라서 ∠APO = 30°, ∠POA = 60° $\overline{\mathrm{AO}} = \frac{3\sqrt{3}}{\sqrt{3}} = 3$, $\overline{\mathrm{PO}} = 6$

14. 다음 그림과 같이 AE, AF 가 원 ○ 의 접 선일 때, 삼각형 ABC 의 둘레의 길이를 구하여라.
 (단, ∠BAC = 60°, AO = 10)

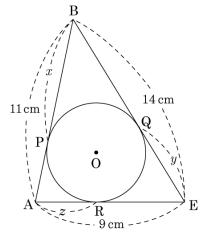

답:
 > 정답: 10√3

 $\overline{AF} = 5\sqrt{3} \text{ cm}, \overline{BC} = \overline{BE} + \overline{CF}$ 이므로

해설


 $\overline{AB} + \overline{BC} + \overline{CA} = \overline{AE} + \overline{AF}$ $= 10\sqrt{3} (cm)$

15. 다음 그림에서 x 의 길이를 구하여라.


ightharpoonup 정답: $8\sqrt{2}$ $\underline{\mathrm{cm}}$

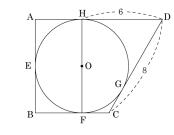
▶ 답:

 $\underline{\mathrm{cm}}$

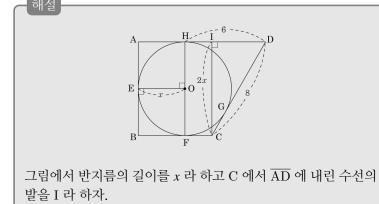
16. $\theta \circ \Delta ABC$ 에 내접한다고 한다. 점 P, Q, R 는 각 변의 접점이고, $\overline{AB} = 11 \,\mathrm{cm}, \ \overline{BC} =$ $14\,\mathrm{cm},\ \overline{\mathrm{AC}}=9\,\mathrm{cm}$ 라고 할 때, 2x + 2y + 2z 의 값은?

 $\ensuremath{\, \Im \,} 33.5 \ (\ensuremath{\, \mathrm{cm} \,})$

 $\textcircled{1} \ 35 \ (\text{cm})$ 4 33 (cm)


②34 (cm)

 $\overline{\mathrm{PQ}} = \overline{\mathrm{PB}}, \ \overline{\mathrm{PA}} = \overline{\mathrm{AR}}, \ \overline{\mathrm{RE}} = \overline{\mathrm{QE}}$ 이므로


해설

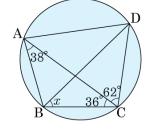
2x + 2y + 2z = 34 (cm)

17. 다음 그림과 같이 원 O 의 외접사각형 ABCD 에서 네 점 E, F, G, H 는 접점이고 선분 HF 는 원 O 의 지름이다. $\overline{\text{CD}}=8,\overline{\text{DH}}=6$ 일 때, 원 O 의 반지름의 길이는?

 $\boxed{5}2\sqrt{3}$ ① 3 ② $\sqrt{10}$ ③ $3\sqrt{2}$ ④ 4

 $\overline{\mathrm{CI}}=2x,\;\overline{\mathrm{DH}}=6$ 이므로 $\overline{\mathrm{DG}}=6,\;\overline{\mathrm{HI}}=\overline{\mathrm{CF}}=\overline{\mathrm{CG}}=2$ 이고 $\overline{\mathrm{DI}} = 4$

 \triangle CDI 에서 $(2x)^2 + 4^2 = 8^2$ $\therefore x = 2\sqrt{3}$


18. 다음 그림에서 $\angle x$ 의 크기를 구하면?

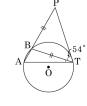
① 36°

② 38°

③ 40°

④ 42° ⑤ 44°

 $\angle ABD = \angle ACD = 62^{\circ}$


△ABC에서

 $38^{\circ} + 62^{\circ} + \angle x + 36^{\circ} = 180^{\circ}$

해설

 $\therefore \ \angle x = 44^{\circ}$

19. 원 O 의 접점 T 가 다음과 같고 , $\overline{BT} = \overline{BP}$, $\angle BTP = 54^\circ$ 를 만족한 다고 할 때, ∠ATB 의 크기로 알맞은 것은?

해설

① 11° ② 13° ③ 14° ④ 17°

 $\angle P = 54^\circ$

 $\angle \mathrm{BTP} = \angle \mathrm{TAB} = 54^{\circ}$ $\angle ABT = 108^{\circ}$

 $\angle ATB = 180^{\circ} - 54^{\circ} - 108^{\circ} = 18^{\circ}$

20. y km 의 도로를 처음에는 시속 5 km 로 a 시간 동안 달리고, 남은 거리 를 시속 7 km 로 달렸을 때, 전체 걸린 시간을 문자를 사용한 식으로 나타내어라.

▶ 답: 시간 ightharpoonup 정답: $\frac{2a+y}{7}$ 시간

해설

달린 거리 : $(거리) = (시간) \times (속력) = 5 \times a = 5a(\text{km})$ 남은 거리 : (y-5a) km

남은 거리를 달리는 시간 : $\left(\frac{y-5a}{7}\right)$ 시간 따라서 전체 걸린 시간은

 $a + \frac{y - 5a}{7} = \frac{7a}{7} + \frac{y - 5a}{7} = \frac{2a + y}{7}$ (시간) 이다.

21. $a = -\frac{1}{4}$ 일 때, 다음 보기의 식을 그 값이 큰 것부터 차례로 나열한 것으로 알맞은 것은?

サブ
$$-\frac{1}{a^2}$$
, a^2 , $-\frac{1}{a}$

①
$$-\frac{1}{a^2}$$
, $-\frac{1}{a}$, a^2
② $-\frac{1}{a^2}$, a^2 , $-\frac{1}{a}$
③ $-\frac{1}{a}$, a^2 , $-\frac{1}{a^2}$
③ a^2 , $-\frac{1}{a^2}$, $-\frac{1}{a}$

$$\stackrel{\textcircled{4}}{ } a^2$$

(5)
$$a^2$$
, $-\frac{1}{a^2}$, -

해설
$$-\frac{1}{a^2} = -1 \div a^2 = -1 \div \frac{1}{16} = -1 \times 16 = -16$$

$$a^2 = \left(-\frac{1}{4}\right)^2 = \frac{1}{16}$$

$$-\frac{1}{a} = -1 \div a = -1 \div \left(-\frac{1}{4}\right) = -1 \times \left(-4\right)$$

$$-\frac{1}{a} = -1 \div a = -1 \div \left(-\frac{1}{4}\right) = -1 \times (-4) = 4$$
$$4 > \frac{1}{16} > -16$$
이므로 큰 것부터 나열하면 $-\frac{1}{a}$, a^2 , $-\frac{1}{a^2}$ 이다.

22. [a] 는 a 보다 크지 않은 가장 큰 정수라고 한다. $x = -\frac{5}{2}$ 일 때, 다음 식의 값을 구하여라.

$$-\frac{1}{3}[x] + \frac{1}{2}[x^2] - [x^2 - x + 1] \div \frac{3}{2}$$

▶ 답:

▷ 정답: -2

$$[x] = \left[-\frac{5}{2}\right] = -3$$

$$[x^2] = \left[\left(-\frac{5}{2}\right)^2\right] = \left[\frac{25}{4}\right] = 6$$

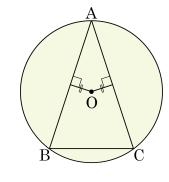
$$x^2 - x + 1 = \left(-\frac{5}{2}\right)^2 - \left(-\frac{5}{2}\right) + 1$$

$$= \frac{25}{4} + \frac{5}{2} + 1$$

$$= \frac{39}{4}$$

$$[x^2 - x + 1] = \left[\frac{39}{4}\right] = 9$$

$$\therefore -\frac{1}{3} \times (-3) + \frac{1}{2} \times 6 - 9 \div \frac{3}{2} = 1 + 3 - 9 \times \frac{2}{3}$$


$$= -2$$

23. 3x = 4y 일 때, $\frac{x}{x-y} - \frac{y}{x+y}$ 의 값을 구하여라.

ightharpoonup 정답: $rac{25}{7}$

 $3x = 4y 이므로 양변을 3 으로 나누면 <math>x = \frac{4}{3}y$ 주어진 식 $\frac{x}{x-y} - \frac{y}{x+y}$ 에 $x = \frac{4}{3}y$ 를 대입하면 $\frac{\frac{4}{3}y}{\frac{4}{3}y - \frac{3}{3}y} - \frac{y}{\frac{4}{3}y + \frac{3}{3}y} = \frac{\frac{4}{3}y}{\frac{1}{3}y} - \frac{y}{\frac{7}{3}y}$ $3^{y} = \frac{3}{3}y \div \frac{3}{3}y - y \div \frac{7}{3}y$ $= \frac{4}{3}y \times \frac{3}{y} - y \times \frac{3}{7y}$ $= 4 - \frac{3}{7}$ $= \frac{28}{7} - \frac{3}{7}$ $= \frac{25}{7}$

24. 다음 그림의 원 O 에서 $5.0 \mathrm{pt} \widehat{\mathrm{BC}} = 10 \pi$, $\angle \mathrm{BAC} = 30^\circ$ 일 때, $5.0 \mathrm{pt} \widehat{\mathrm{AC}}$ 의 길이는?

① 15π ② 18π

 32π

 $4)25\pi$

 $\bigcirc 30\pi$

원의 중심에서 현이 이르는 거리가 같으면 두 현의 길이가 같으

므로 $\overline{AB} = \overline{AC}$ 인 이등변 삼각형이다. $\angle A = 30^\circ$ 이므로 $\angle ABC = 75^\circ$ 또한 원주각의 크기에 호의 길이는 비례하므로

 $5.0 \overrightarrow{\text{ptBC}} : 5.0 \overrightarrow{\text{ptAC}} = \angle BAC : \angle ABC$

 $10\pi : 5.0 \widehat{\text{ptAC}} = 30^{\circ} : 75^{\circ}$ $\therefore 5.0 \widehat{\mathrm{ptAC}} = 25\pi$

25. 다음 그림에서 직선 PQ 는 두 원에 동시에 접한다. $\angle PBQ = 138^{\circ}$ 일 때, $\angle PAQ$ 의 크기를 구하여라.

P 138° Q

 ▷ 정답: 42°

▶ 답:

 \overline{AB} 를 그으면 $\angle QPB = \angle BAP$, $\angle PQB = \angle BAQ$ 이므로

 $\angle PAQ = \angle QPB + \angle PQB = 180^{\circ} - 138^{\circ} = 42^{\circ}$

- **26.** 다음 방정식을 만족하는 정수 x, y 에 대하여 (x, y) 의 순서쌍이 무수히 많은 경우는?
 - ① x > 0, y < 0 일 때, 2x 5y = 10
 - ② x > 0, y < 0 일 때, $\frac{4}{3}x \frac{3}{5}y = 7$
 - ③x > 0, y < 0 일 때, 2x + y = -3
 - ④ x < 0, y > 0 일 때, $3x \frac{5}{2}y = 4$ ⑤ x < 0, y > 0 일 때, -3x + 5y = 8

① 해가 없다.

해설

- 20x 9y = 105, (x, y) = (3, -5)
- ③ 해가 무수히 많다.
 ④ 6x 5y = 8, 해가 없다.

27. 등식 4 - ax = (a - 3)x 의 해가 없을 때, 상수 a 의 값을 구하여라.

답:

ightharpoonup 정답: $rac{3}{2}$

해설

$$(3-2a)x = -4$$
$$3-2a = 0$$
$$a = \frac{3}{2}$$

28. 1시간에 x 리터의 물을 넣는 대형 펌프로 물탱크에 물을 넣기 시작한 지 2시간 만에 펌프가 고장이 났다. 1시간 동안 펌프를 수리한 후, 펌프를 풀 가동시켜서 물을 채우는 양을 20%만큼 늘려서 물을 채웠 더니 원래 예정 시간보다 30분 더 걸렸다. 물탱크의 부피가 20000 리터일 때, x 의 값을 구하여라.

▷ 정답: 4000

▶ 답:

(예정 시간) = $\frac{20000}{x}$

= (100 %로 물을 채운 2시간) + (수리한 1시간)

+ (20 %만큼 늘려서 물을 채운 시간) - (30분) 20% 만큼 늘려서 물을 채운 시간을 y 라 두면,

 $\frac{20000}{x} = y + \frac{5}{2}$ $20000 - \frac{5}{2}x = yx \cdot \cdot \cdot \bigcirc$ $20000 = 2x + \frac{6}{5}yx \cdot \cdot \cdot \bigcirc$

 \bigcirc , \bigcirc 를 연립하면 x=4000이다.

29. 다음 그림의 $\triangle ABC$ 에서 $\angle A: \angle B: \angle C=$ 3 : 4 : 5 이고, 외접원 O 의 반지름의 길이

가 4cm 일 때, △ABC 의 넓이를 구하여라. (단, 단위는 생략한다.)

 $4\,\mathrm{cm}$

답:

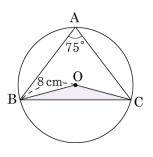
ightharpoonup 정답: $12 + 4\sqrt{3}$

 $\angle A: \angle B: \angle C=3:4:5$ 이므로 $5.0 pt \overrightarrow{AB}: 5.0 pt \overrightarrow{AB}: 5.0 pt \overrightarrow{CA}=5:3:4$ 이다.

 $\angle A = \frac{3}{12} \times 180^{\circ} = 45^{\circ}$

 $\angle B = \frac{4}{12} \times 180^{\circ} = 60^{\circ}$

 $\angle C = \frac{5}{12} \times 180^{\circ} = 75^{\circ}$ $\Rightarrow \angle BOC = 90^{\circ}, \angle COA = 120^{\circ}, \angle AOB = 150^{\circ}$ $\triangle AOB = \frac{1}{2} \times \overline{OA} \times \overline{BH} \; (\; \overline{BH} 는 삼각형의 높이)$


 $\overline{\mathrm{BH}} = 10\sin30$ 이므로

 $\triangle AOB = \frac{1}{2} \times 4 \times 4 \times \frac{1}{2} = 4$ 같은 방법으로 $\triangle AOC = \frac{1}{2} \times 4 \times 4 \times \sin 60^{\circ} = 4\sqrt{3}, \ \triangle BOC = 1$

 $\frac{1}{2} \times 4 \times 4 \times \sin 90^{\circ} = 8$

따라서 $\triangle ABC = \triangle AOB + \triangle AOC + \triangle BOC$ $=4+4\sqrt{3}+8=12+4\sqrt{3}$ 이다.

30. 다음 그림과 같이 반지름의 길이가 8 cm 인 원 O 에 내접하는 $\triangle ABC$ 에서 $\angle BAC =$ 75° 일 때, △OBC 의 넓이를 구하여라.

▶ 답: ▷ 정답: 16 cm²

 $\underline{\mathrm{cm}^2}$

 $\angle BOC = 75^{\circ} \times 2 = 150^{\circ}$

따라서 △OBC 의 넓이는

 $\frac{1}{2} \times 8 \times 8 \times \sin (180^{\circ} - 150^{\circ})$ $= \frac{1}{2} \times 8 \times 8 \times \frac{1}{2} = 16 \text{ (cm}^2) \text{ 이다.}$