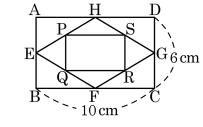

1. 다음 그림에서 x 의 값을 구하여라.



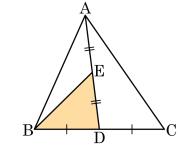
답:

▷ 정답: 6

 $\frac{1}{2}(x+10) = 8, x = 6$

다음 그림에서 □EFGH 는 직사각형 *ABCD* 의 각 변의 중점을 연결한 2. 사각형이고, □PQRS 는 □EFGH 의 각 변의 중점을 연결한 사각형이 다. □PQRS 의 둘레의 길이를 구하여라.

 $\underline{\mathrm{cm}}$


▷ 정답: 16<u>cm</u>

▶ 답:

 $\overline{PQ} = \overline{SR} = \frac{1}{2}\overline{HF} = 3 \text{ (cm)}$ $\overline{PS} = \overline{QR} = \frac{1}{2}\overline{EG} = 5 \text{ (cm)}$

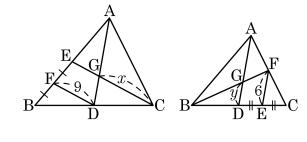
 $=16\,(\mathrm{\,cm})$

3. 다음 그림에서 \overline{AD} 는 $\triangle ABC$ 의 중선이고 점 E 는 \overline{AD} 의 중점이다. $\triangle BDE$ 의 넓이가 $7cm^2$ 일 때, $\triangle ABC$ 의 넓이는?

① 14cm^2 ② 28cm^2

 $\Im 35 \text{cm}^2$

 $3 25 \text{cm}^2$


 $21 \, \mathrm{cm}^2$

 $\overline{\mathrm{BE}}$ 가 $\triangle\mathrm{ABD}$ 의 중선이므로 $\triangle\mathrm{ABD} = 2\triangle\mathrm{BDE} = 2 \times 7 =$

해설

14 (cm²) 이고, ĀD 가 △ABC 의 중선이므로 △ABC = 2△ABD = 2 × 14 = 28 (cm²) 이다.

4. 다음 그림의 $\triangle ABC$ 에서 점 G는 $\triangle ABC$ 의 무게중심일 때, x+y의 값을 구하면?

⑤ 18

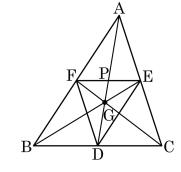
416 ① 12 ② 14 ③ 15

왼쪽 삼각형에서

 $\overline{\mathrm{AG}}:\overline{\mathrm{GD}}=2:1$ 이므로 $\overline{\mathrm{AG}}:\overline{\mathrm{AD}}=2:3$ $2:3=\overline{\mathrm{EG}}:9$

 $\overline{\mathrm{EG}}=6$

2:1=x:6


x = 12

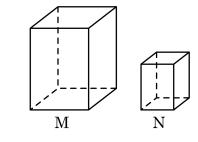
한편, 오른쪽 삼각형에서 $\overline{
m DE}=\overline{
m CE},\ \overline{
m AF}=\overline{
m CF}$ 이므로 $\overline{
m AD}=$

점 G가 무게중심이므로 $y = 12 \times \frac{1}{3} = 4$

 $\therefore x + y = 16$

5. 다음 그림에서 점 G 는 \triangle ABC 의 무게 중심일 때, 보기에서 옳지 않은 것을 골라라.

① $\triangle BCG = \frac{1}{3} \triangle ABC$ ② 점G 는 $\triangle DEF$ 의 무게 중심이다.

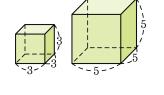

- © △ABC 의 둘레는 △DEF 둘레의 2 배이다.
- $\ \, \boxdot{\overline{PG}}=\overline{GD}=1:3$

답:

▷ 정답: 回

© 점G 는 ΔDEF 의 무게 중심이므로 $\overline{PG} = \overline{GD} = 1:2$ 이다.

6. 닮은 두 직육면체 M 와 N 의 겉넓이의 비가 9:4 이고 M 의 겉넓이가 18 일 때, N 의 겉넓이는?



① 8 ② 10 ③ 12 ④ 14 ⑤ 16

9:4=18:x

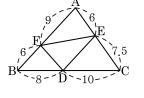
 $\therefore x = 8$

7. 다음 그림에서 두 정육면체의 겉넓이의 비와 부피의 비는?

① 6:10,9:15 ② 6:10,18:30 ③ 9:25,18:50 ④ 9:25,27:125 ⑤ 9:25,36:100

(4) 9: 25, 27: 125 (5) 9: 25, 36: 1

닮음비가 m:n 이면 넓이의 비는 $m^2:n^2$, 부피의 비는 $m^3:n^3$


해설

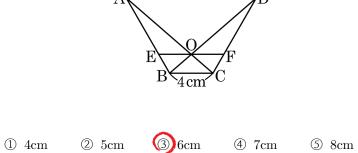
이므로 겉넓이의 비는 9 : 25 , 부피의 비는 27 : 125 이다.

- 8. 어떤 탑의 높이를 재기 위하여 탑의 그림자 끝 A에서 2m 떨어진 지점 B에 길이가 1.2m인 막대를 세워 그 그림자의 끝이 탑의 그림자의 끝 과 일치하게 하였다. 막대와 탑 사 이의 거리가 6m일 때, 탑의 높이를 구하면?
 - ① 2.4 m ② 3 m ③ 3.6 m ④ 4 m ⑤ 4.8 m

해설 △ABC ♡ △AB'C' 이므로 2 : 8 = 1.2 : Ĉ'B' ∴ Ĉ'B' = 4.8 m

9. 다음 그림에서 선분 DE,EF,FD 중에서 $\Delta {
m ABC}$ 의 변에 평행한 선분을 기호로 나타 내어라.

▶ 답:

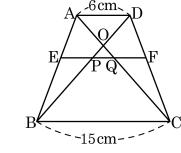

▷ 정답:ED

 $9:6 \neq 6:7.5$

해설

 $8:10\neq 6:9$ 7.5:6=10:8 $\therefore \overline{\rm AB} \ // \ \overline{\rm ED}$

10. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 두 대각선의 교점 O 을 지나고 \overline{BC} 와 평행한 선분 EF 에 대하여 선분 EF 의 길이는?



(3)6cm

 $\triangle AEO$ 와 $\triangle ABC$ 의 닮음비가 3:4 이므로 $\overline{EO}=3$ 이다.

 $\Delta {
m DOF}$ 와 $\Delta {
m DBC}$ 의 닮음비도 3:4 이므로 $\overline{
m OF}=3$ 이다. 따라서 $\overline{\mathrm{EF}}=6$ 이다.

11. 다음 그림의 $\square ABCD$ 에서 $\overline{AD}//\overline{EF}//\overline{BC}$, $\overline{AE}:\overline{EB}=2:3$ 이고, $\overline{AD}=6\mathrm{cm}$, $\overline{BC}=15\mathrm{cm}$ 일 때, \overline{PQ} 의 길이는?

① $\frac{12}{5}$ cm ② $\frac{18}{5}$ cm ③ $\frac{24}{5}$ cm ④ $\frac{28}{5}$ cm

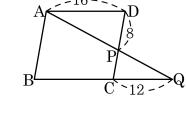
 $\triangle ABC$ 에서 $\triangle ABC$ \hookrightarrow $\triangle AEQ$ 이므로 $\overline{EQ}:15=2:5$, $\overline{EQ}=$

해설

6(cm) $\triangle ABD$ 에서 $\triangle ABD$ 으 $\triangle EBP$ 이므로 $\overline{EP}: 6=3:5$, $\overline{EP}=\frac{18}{5}$ (cm) $\therefore \overline{PQ} = \overline{EQ} - \overline{EP} = 6 - \frac{18}{5} = \frac{12}{5}$ (cm)

12. 오른쪽 그림에서 $\overline{\mathrm{AB}}//\overline{\mathrm{EF}}//\overline{\mathrm{DC}}$ 이 고 $\overline{AB} = 7 \text{ cm}, \overline{BC} = 18 \text{ cm},$ $1\overset{'}{2}$ cm $\overline{\mathrm{CD}} = 14\,\mathrm{cm}$ 일 때, x + y의 값을 구하여라.

ightharpoonup 정답: $\frac{44}{3}$ cm


 $\triangle ABE$ \hookrightarrow $\triangle CDE$ 이므로 $\overline{BE}:\overline{DE}=6:12=1:2$ $\therefore \ \overline{\mathrm{BE}} : \overline{\mathrm{BD}} = 1 : 3$ $\overline{\mathrm{BE}}:\overline{\mathrm{BD}}=1:3$ 이므로 $\overline{\mathrm{EF}}:\overline{\mathrm{CD}}=1:3,$ $\overline{\mathrm{EF}}:12=1:3$

 $\therefore \overline{\mathrm{EF}} = x = 4(\mathrm{\,cm})$

 $\triangle CDE$ \bigcirc $\triangle ABE$ 이므로 $\overline{CE}:\overline{AE}=12:6=2:1$ $\overline{\text{CE}}: \overline{\text{CA}} = 2:3$ $\overline{\text{CE}}: \overline{\text{CA}} = 2:3$ 이므로 $\overline{\text{CF}}: \overline{\text{CB}} = 2:3$, $\overline{\text{CF}}: 16 = 2:3$

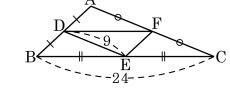
 $\therefore \overline{CF} = y = \frac{32}{3} (cm)$ $\therefore x + y = \frac{44}{3} (\text{cm})$

 ${f 13.}$ 다음 평행사변형 ABCD 에서 ${f AB}$ 의 길이를 구하여라.

▷ 정답: 14

답:

 $\overline{\mathrm{AB}} = x$ 라고 하면


해설

 $\overline{\mathrm{AB}}:\overline{\mathrm{PC}}=\overline{\mathrm{BQ}}:\overline{\mathrm{CQ}}$ x:(x-8)=(16+12):12

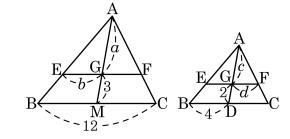
12x = (28x - 224)16x = 224

 $\therefore x = 14$

14. 다음 그림의 둘레가 52인 $\triangle ABC$ 에서 점 D, E, F가 각 변의 중점일 때, \overline{EF} 의 길이를 구하여라.

▶ 답:

▷ 정답: 5


삼각형의 중점연결 정리에 의하여

 $\overline{\mathrm{DE}} = \frac{1}{2}\overline{\mathrm{AC}},\,\overline{\mathrm{EF}} = \frac{1}{2}\overline{\mathrm{AB}},\,\overline{\mathrm{FD}} = \frac{1}{2}\overline{\mathrm{BC}}$ 이다.

$$\Delta DEF$$
의 둘레의 길이는
$$\overline{DE} + \overline{EF} + \overline{FD} = \frac{1}{2}(\overline{AC} + \overline{AB} + \overline{BC}) = \frac{1}{2} \times 52 = 26 \text{ 이므로}$$

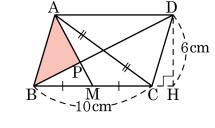
$$\overline{\mathrm{EF}} = 26 - 9 - \left(\frac{1}{2} \times 24\right) = 5$$
 이다.

15. 다음 그림에서 점 G가 \triangle ABC의 무게중심일 때, a+b+c+d의 값을

- ① $\frac{15}{2}$ ② 10 ③ $\frac{20}{3}$ ④ $\frac{50}{3}$ ⑤ 30

2:1=a:3이므로 a=6

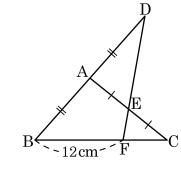
$$\overline{BM} = \frac{1}{2} \overline{BC} = 6$$


$$\overline{BM} = \frac{1}{2} \overline{BC} = 6$$
이므로 $3:2=6:b, b=4$
 $2:1=c:2$ 이므로 $c=4$
 $3:2=4:d$ 에서 $d=\frac{8}{3}$

$$3:2=4:d$$
에서 $d=\frac{8}{3}$

$$3 \cdot 2 - 4 \cdot u$$

$$\therefore a+b+c+d=6+4+4+\frac{8}{3}=\frac{50}{3}$$


16. 다음 그림의 평행사변형 ABCD 에서 변 BC 의 중점을 M 이라 하고, 대각선 BD 와 선분 AM 의 교점을 P 라 할 때, \triangle ABP 의 넓이는?

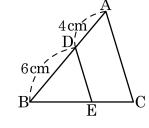
- 4 12cm^2
- \bigcirc 8cm² \bigcirc 15cm²
- 310cm^2

 \overline{AC} 와 \overline{BD} 의 교점을 Q 라 하면, \overline{AM} 과 \overline{BQ} 는 $\triangle ABC$ 의 중선이 므로 점 P 는 이 삼각형의 무게중심이 된다. 따라서 무게중심의 $\triangle ABP = \frac{1}{3} \triangle ABC = \frac{1}{3} \times \frac{1}{2} \times 10 \times 6 = 10 \text{(cm}^2)$ 이다.

17. 아래 그림과 같이 $\triangle ABC$ 에서 \overline{AB} 의 연장선 위에 $\overline{AB}=\overline{AD}$ 를 만족 하는 점 D 를 잡고, \overline{AC} 의 중점 E 에 대하여 \overline{DE} 의 연장선과 \overline{BC} 의 교점을 F 라 하자. $\overline{\mathrm{BF}}=12\mathrm{cm}$ 일 때, $\overline{\mathrm{CF}}$ 의 길이는?

① 4cm

- ② 5cm ⑤ 7cm
- (3)6cm


다음 그림과 같이 $\overline{\mathrm{AG}}//\overline{\mathrm{BC}}$ 가 되도록 점 G 를 잡으면 $\Delta\mathrm{DBF}$ 에서 $\overline{AG} = \frac{1}{2}\overline{BF} = 6(cm)$

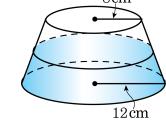
 $\triangle AEG$ 와 $\triangle CEF$ 에서 $\angle GAE$ = $\angle FCE$ (엇각), \overline{AE} = \overline{CE} ,

 $\angle AEG = \angle CEF$ (맞꼭지각) 이므로 $\triangle AEG \equiv \triangle CEF(ASA합동)$

 $\therefore \overline{\mathrm{CF}} = \overline{\mathrm{AG}} = 6(\mathrm{cm})$

18. 다음 그림의 △ABC 에서 \overline{AC} $/\!/ \overline{DE}$, △ABC = $75\,\mathrm{cm}^2$ 일 때, □ADEC 의 넓이를 바르게 구한 것은?

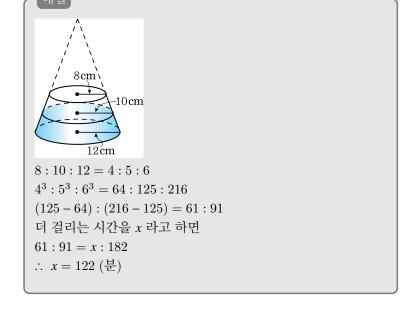
 $46 \,\mathrm{cm}^2$


- ② $42 \,\mathrm{cm}^2$ ③ $48 \,\mathrm{cm}^2$
- $34 \, \mathrm{cm}^2$

ΔABC와 ΔDBE의 닮음비가 10 : 6 = 5 : 3이므로 넓이의 비는

25:9이다. $\Box ADEC = \triangle ABC - \triangle DBE$ 이므로 $\triangle ABC: \Box ADEC = 25:16$ 따라서 $\Box ADEC = \frac{16}{25} \triangle ABC = 48 \text{ (cm}^2\text{)}$

25


19. 다음 그림과 같은 원뿔대 모양의 그릇에 전체 높이의 $\frac{1}{2}$ 만큼 물을 채우는 데 182 분이 걸렸다. 물을 가득 채우는 데 더 걸리는 시간을 구하여라.

분

<mark>▷ 정답:</mark> 122<u>분</u>

▶ 답:

- ${f 20}$. 축척이 1:50000 인 지도에서의 거리가 $15\,{
 m cm}$ 인 두 지점 사이를 시속 10 km 의 속력으로 달릴 때 걸리는 시간을 구하면?
 - ⑤ 45 분 ④ 40 분 ① 25 분 ③ 35 분 ② 30 분

(실제 거리) = $15 \times 50000 = 750000 (\mathrm{cm}) = 7.5 (\mathrm{km})$ (시간) = $\frac{7.5}{10}$ = 0.75(시간) = $45(\frac{\mathrm{H}}{\mathrm{T}})$