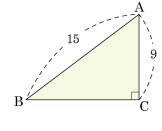
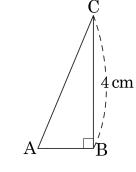

다음 직각삼각형 ABC 에서 옳은 것을 **1.** 모두 고르면? (정답 2개)



해설

 $(3) \cos B \times \cos A = \frac{12}{5}$


$$\overline{BC} = \sqrt{15^2 - 9^2} = 12$$

$$2 \tan A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{3}$$

$$2 \tan A = \frac{BC}{\overline{AC}} = \frac{4}{3}$$

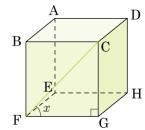
$$4 \tan B = \frac{\overline{AC}}{\overline{BC}} = \frac{3}{4}$$

2. 다음 그림과 같은 직각삼각형 ABC 에서 $\tan C = \frac{5}{12}$ 이고, \overline{BC} 가 $4 \mathrm{cm}$ 일 때, \overline{AB} 의 길이를 구하여라.

답: 5

<u>cm</u>

ightharpoonup 정답: $\frac{5}{3}$ $\underline{\mathrm{cm}}$


 $an C = {\overline{\overline{AB}} \over \overline{\overline{BC}}} = {\overline{\overline{AB}} \over 4} = {5 \over 12}$ 이므로 $4 \times 5 = 12 \times \overline{AB}$ 이다. 따라서 $\overline{\overline{AB}} = {5 \over 3} {\rm cm}$ 이다.

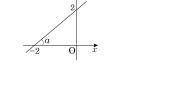
- 3. $\tan A = \frac{4}{3}$ 일 때, $\cos A + \sin A$ 의 값은? (단, $0^{\circ} < A < 90^{\circ}$)

해설
$$\tan A = \frac{8}{6} \text{ 이므로}$$

$$\therefore \cos A + \sin A = \frac{3}{5} + \frac{4}{5} = \frac{7}{5}$$

다음 그림은 한 변의 길이가 1 인 정육면 **4.** 체이다. $\angle CFG = x$ 일 때, $\sin x$ 의 값을 구하면?

- ① $\frac{\sqrt{2}}{2}$ ② $\frac{2\sqrt{2}}{3}$ ③ $\frac{2}{3}$ ④ $\frac{\sqrt{6}}{2}$
- ⑤ 2


 $\overline{\text{CF}} = \sqrt{2}, \overline{\text{CG}} = 1$ 이므로 $\sin x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ 이다.

다음 중 옳지 <u>않은</u> 것은? **5.**

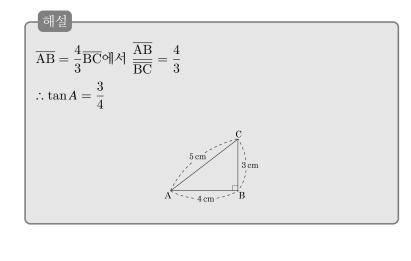
- ① $\sin 0^\circ = 0$, $\sin 90^\circ = 1$ ② $\cos 0^\circ = 1$, $\cos 90^\circ = 0$ $\textcircled{4} \tan 0^{\circ} = 0$, $\tan 45^{\circ} = 1$

⑤ $\sin 30^\circ = \frac{1}{2}$, $\cos 30^\circ = \frac{\sqrt{3}}{2}$, $\frac{\sin 30^\circ}{\cos 30^\circ} = \frac{1}{\sqrt{3}} = \tan 30^\circ$

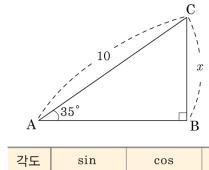
6. 다음 그래프를 보고 직선의 기울기의 값을 x, a 의 크기를 y° 라 할 때, x + y 의 값을 구하면?

① 16 ② 31 ③ 46 ④ 61 ⑤ 91

(직선의 기울기) $=\frac{2}{2}=1$ $\tan a = 1$


 $\therefore a = 45^{\circ}$

따라서 x + y = 1 + 45 = 46 이다.


7. $\angle B=90^\circ$ 인 직각삼각형 ABC 에 대해서 $\overline{AB}=\frac{4}{3}\overline{BC}$ 일 때, $\tan A$ 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{3}{4}$

8. 다음 그림의 $\triangle ABC$ 에서 삼각비의 표를 보고 x 의 값을 구하면?

각도	sin	cos	tan
54°	0.8090	0.5878	1.3764
55°	0.8192	0.5736	1.4281
56°	0.8290	0.5592	1.4826

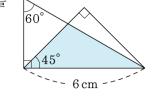
② 5.736 ③ 5.878 ④ 8.09

⑤ 8.29

해설

① 8.192

 $\angle C = 55^{\circ}$ 이므로 $x = 10 \times \cos 55^{\circ} = 10 \times 0.5736 = 5.736$


9.
$$\sin(90^{\circ} - A) = \frac{12}{13}$$
 일 때, $\tan A$ 의 값은?(단, $0^{\circ} < A < 90^{\circ}$)

① $\frac{12}{5}$ ② $\frac{13}{5}$ ③ $\frac{12}{13}$ ④ $\frac{5}{12}$ ⑤ $\frac{5}{13}$

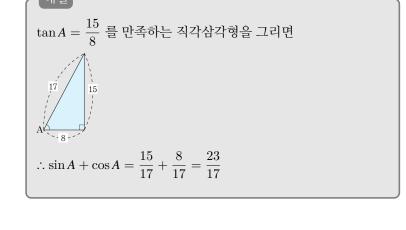
$$\sin(90^{\circ} - A) = \cos A = \frac{12}{13}$$
 이다.
$$\sin A = \frac{5}{13}$$
 이므로

따라서 $\tan A = \frac{\sin A}{\cos A} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12}$ 이다.

- 10. 다음 그림과 같이 두 개의 삼각자를 겹쳤을 때, 겹쳐진 부분의 넓이를 구하여라.
 - ① $5(\sqrt{3}-1)$ cm²
 - $2 7 \left(\sqrt{3}-1\right) cm^2$
 - $\boxed{3}9\left(\sqrt{3}-1\right)cm^2$
 - $4 \ 11 \left(\sqrt{3} 1\right) \text{cm}^2$
 - $3 22 (\sqrt{2} 1) \text{ cm}^2$

	$\overline{\mathrm{AD}} = x$ 라 하면
	$\overline{\mathrm{BD}} = x, \overline{\mathrm{DC}} = \sqrt{3}x$
	$\overline{BC} = x + \sqrt{3}x = (1 + $
- 1	i i i i i i i i i i i i i i i i i i i

 $\sqrt{3}$)x =


6 (cm) $\overline{\mathrm{AD}} = 3\left(\sqrt{3} - 1\right) \ (\mathrm{cm})$

 $\therefore S = \frac{1}{2} \times 6 \times 3 \left(\sqrt{3} - 1\right) = 9 \left(\sqrt{3} - 1\right) \left(cm^{2}\right)$


11. 0° < A < 90° 이고 $8 \tan A - 15 = 0$ 일 때, $\sin A + \cos A$ 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{23}{17}$

12. 다음 보기 중 $\cos x$ 와 같은 값을 갖는 것을 모두 골라라.

답: ▶ 답:

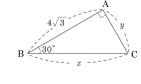
▷ 정답: ⑤ ▷ 정답: ②

 $\triangle ABC \hookrightarrow \triangle HBA \hookrightarrow \triangle HAC(AA 닮음)$ $\Rightarrow \angle x = \angle \text{CAH}$ $\bigcirc \frac{\overline{\text{CH}}}{\overline{\text{AC}}} = \sin x$

 $\bigcirc \frac{\overline{AC}}{\overline{AH}} = \frac{1}{\cos x}$

13. $(5\sin 90^\circ - 2\cos 0^\circ) \times (2\tan 45^\circ - 5\cos 90^\circ)$ 의 값을 X, $10\cos 0^\circ \div$ $5 \tan 45^{\circ} \times 2 \sin 90^{\circ}$ 의 값을 Y 라 할 때, X + Y 의 값은?

10


- ② 9 ③ 0 ④ 1 ⑤ 3

 $X = (5-2) \times (2-5 \times 0) = 3 \times 2 = 6$

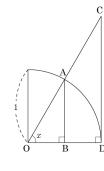
 $Y = 10 \div 5 \times 2 = 4$ 이므로

X + Y = 6 + 4 = 10

14. 다음 그림에서 $y^2 - x$ 의 값은?

- ① -3 ② 2 ③ 4 ④ 6

$$4\sqrt{3} \qquad 3$$


$$\cos 30^\circ = \frac{4\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$
 이므로 $x =$

$$\tan 30^{\circ} = \frac{y}{4\sqrt{3}} = \frac{\sqrt{3}}{3} \text{ 이므로 } y = 4$$

$$\cos 30^{\circ} = \frac{4\sqrt{3}}{x} = \frac{\sqrt{3}}{2} \text{ 이므로 } x = 8$$

$$\therefore y^{2} - x = 16 - 8 = 8$$

15. 그림과 같이 반지름의 길이가 1 인 사분원에서 $\tan x$ 를 나타내는 선분은?

 $\overline{\mathrm{OD}} = 1$, $\triangle \mathrm{COD}$ 에서 $\tan x = \frac{\overline{\mathrm{CD}}}{\overline{\mathrm{OD}}} = \overline{\mathrm{CD}}$ $\therefore \tan x = \overline{\mathrm{CD}}$

- **16.** $0^{\circ} < A < 45^{\circ}$ 일 때, $\sqrt{(\tan A + 1)^2} + \sqrt{(\tan 60^{\circ} \tan A)^2}$ 을 간단히 하면?

- ① $1 + \frac{\sqrt{2}}{2}$ ② $1 + \sqrt{2}$ ③ $1 + 2\sqrt{2}$ ④ ① $1 + \frac{2\sqrt{3}}{3}$

0° < A < 45° 이므로 0 < tan A < 1

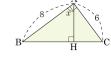
해설

 $\sqrt{(\tan A + 1)^2} + \sqrt{(\tan 60^\circ - \tan A)^2} = \tan A + 1 + \tan 60^\circ - \tan A = 1 + \tan 60^\circ = 1 + \sqrt{3}$

17. 다음 x 의 값 중에서 가장 큰 값과 작은 값의 합을 구하여라.

▶ 답: ▷ 정답: 135_°

① $\sin 45^{\circ} = \frac{\sqrt{2}}{2}$, $3x = 45^{\circ}$, $x = 15^{\circ}$ 이다.

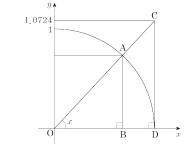

해설

© $\tan 60^{\circ} = \sqrt{3}$, $\frac{x}{2} = 60^{\circ}$, $x = 120^{\circ}$ 이다.

© $\cos 60^{\circ} = \frac{1}{2}$, $2x - 10^{\circ} = 60^{\circ}$, $x = 35^{\circ}$ 이다. ② $\sin 30^{\circ} = \frac{1}{2}$, $x = 30^{\circ}$ 이다.

따라서 120° + 15° = 135° 이다.

18. 다음 그림에 대하여 $\sin x + \cos x$ 의 값을 구하여라.



ightharpoonup 정답: $rac{7}{5}$

 $\overline{BC} = \sqrt{6^2 + 8^2} = 10$ 이다.

직각삼각형 ABC 와 직각삼각형 HBA 는 서로 AA 닮음이므로 ∠BAH = ∠ACH 이다. 따라서 $\sin x = \frac{4}{5}, \cos x = \frac{3}{5}$ 이고, $\sin x + \cos x = \frac{3}{5} + \frac{4}{5} = \frac{7}{5}$

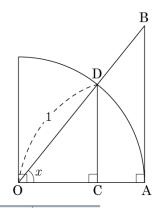
19. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 삼각비의 표를 이용하여 $\overline{\mathrm{BD}}$ 의 길이를 구하면?

각도	사인(sin)	코사인(cos)	탄젠트(tan)
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6820	1.0724
48°	0.7431	0.6691	1.1106

① -0.724 ② -0.6820 **4**0.3180 **5** 0.6820

③ 0.3903

해설


$$\tan x = \frac{\overline{CD}}{\overline{OD}} = \frac{\overline{CD}}{1} = 1.0724 \, \text{A} \, x = 47^{\circ}$$

$$\overline{BD} = \overline{OD} - \overline{OB}$$

$$\overline{AO} = 1, \cos x = \frac{\overline{BO}}{\overline{AO}} = \frac{\overline{BO}}{1} = 0.6820$$

 $\therefore \overline{BD} = 1 - \cos x = 1 - 0.6820 = 0.3180$

20. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 $\overline{OC} = 0.59$ 일 때, \overline{CD} 의 길 이를 구하면?

⑤ 0.81

식노	사인	고사인	단센트
53°	0.80	0.60	1.33
$54\degree$	0.81	0.59	1.38
$55\degree$	0.82	0.57	1.43
56°	0.83	0.56	1.48

해설

$$\cos x^{\circ} = \frac{\overline{OC}}{\overline{OD}} = \frac{\overline{OC}}{1}$$
, $\overline{OC} = 0.59$ 이므로
$$x^{\circ} = 54^{\circ}$$

$$\sin 54^{\circ} = \frac{\overline{CD}}{\overline{OD}} = \frac{\overline{CD}}{1} = 0.81$$
 이므로
$$\therefore \overline{CD} = 0.81$$