① 2x-1

4) 2x - 7

②
$$2x - 3$$
 ③ $2x - 5$ ⑤ $2x - 9$

1. 3 < x < 4 일 때, $\sqrt{(3-x)^2} - \sqrt{(x-4)^2}$ 을 간단히 하면?

2. $2 \le \sqrt{2x} < 4$ 을 만족하는 자연수 x의 개수는?
 ② 4 개
 ③ 5 개
 ④ 6 개
 ⑤ 7 개
 ① 3 개

「サフ」 つ $3\sqrt{5}$ © $2\sqrt{10}$ © $-5\sqrt{2}$ © $\frac{\sqrt{68}}{\sqrt{2}}$

고르면?

다음 보기의 수를 $\sqrt{10a+b}$ 꼴로 나타냈을 때, a 가 같은 것을 모두

$$=\sqrt{\frac{5}{4}}$$

②
$$-3\sqrt{3} = -\sqrt{27}$$

④ $-\frac{\sqrt{2}}{3} = -\sqrt{\frac{2}{9}}$

5.	다음 중 제곱근을 근호를 사용하지 않고 나타낼 수 있는 것은?							
	$_{\odot}$ 1	<u> </u>		0.455				

 $(2) \frac{-}{81}$ (3) 1.5 (4) 155 (5) 66

- 다음 수 중에서 $\sqrt{3}$ 과 $\sqrt{5}$ 사이에 있지 않은 것은? $\sqrt{5} - 0.01$
 - ① $\sqrt{3} + 0.1$ ② $\sqrt{3} + 0.01$ ④ $\frac{\sqrt{3} + \sqrt{5}}{2}$ ⑤ $\sqrt{5} \sqrt{3}$

B

의 넓이가 $\sqrt{40}$ 일 때, \overline{AB} 의 길이는?

다음 그림과 같이 정사각형 BEFC의 넓이가 8이고, 직사각형 ABCD

① $\sqrt{2}$ ② $\sqrt{3}$ ③ 2 ④ $\sqrt{5}$ ⑤ $\sqrt{6}$

8. $3 < \sqrt{x} \le 4$ 를 만족하는 자연수 x의 개수는? 3 8 4 9

- $(x+A)^2 = x^2 + Bx + \frac{1}{16}$ 에서 A, B 의 값으로 가능한 것을 모두 고르면?
 - ① $A = \frac{1}{4}, B = \frac{1}{4}$
 - ② $A = \frac{1}{4}, B = \frac{1}{2}$ ④ $A = \frac{1}{4}, B = -\frac{1}{4}$ $3 A = -\frac{1}{4}, B = \frac{1}{2}$
 - ⑤ $A = -\frac{1}{4}$, $B = -\frac{1}{2}$

①
$$(-a-b)^2 = -(a+b)^2$$

②
$$(-a+b)^2 = a^2 - 2ab + b^2$$

$$(-a+2)(-a-2) = -a^2 - 4$$

10. 다음 중 옳은 것은?

$$(-a+2)(-a-2) = -a - 4$$

$$(2a-b)^2 = 4a^2 - b^2$$

 $(a+b)^2 - (a-b)^2 = 0$

11.
$$(x+1)(x+3y+1)$$
를 전개하면?

①
$$x^2 + x + 1 + xy + y$$
 ② $x^2 + 2x + 1 + xy + 2y$

$$4 x^2 + 2x + 1 + 3xy + 3y$$

$$3 x^2 + 2x + 1 + 3xy + 2y$$
$$5 x^2 + 3x + 1 + 2xy + 2y$$

- **12.** 203² 을 계산하는데 다음 중 가장 편리한 전개 공식은?
 - ① $(a+b)(a-b) = a^2 b^2$
 - $(a+b)^2 = a^2 + 2ab + b^2$
 - $\mathfrak{I}(a+b) = ma + mb$
 - $(3) \ m(a+b) = ma + mb$
 - $(ax+b)(cx+d) = acx^2 + (ad+bc)x + bd$

(a+b)(c+d) = ac+bc+ad+bd

(ax + b)(cx + a) = acx

13. $x = -\sqrt{5}$, $y = \sqrt{20}$ 일 때, $x^2 + y^2$ 의 값은?

3 20

 $4 \sqrt{20}$

① $\sqrt{15}$

② 15

- **14.** a > 0 일 때, 다음 중 옳지 않은 것은?
 - (1) $\sqrt{a^2} = a$

 $(\sqrt{a})^2 = a$

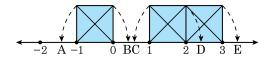
$$\bigcirc$$
 $(-\sqrt{a})$

$$(-\sqrt{a})^2 = a$$

(5) $-\sqrt{a^2} = -a$

 $(3) - \sqrt{(-a)^2} = a$

①
$$\sqrt{75} < 9$$


$$\sqrt{0.3}$$

②
$$-\sqrt{3} < -\sqrt{2}$$
④ $-\sqrt{\frac{1}{2}} < -\sqrt{\frac{1}{2}}$

$$(-\sqrt{\frac{1}{2}})$$

③
$$0.3 > \sqrt{0.3}$$

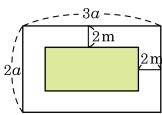
⑤ $\frac{1}{\sqrt{3}} > \frac{1}{\sqrt{4}}$

16. 다음 수직선 위의 네 점 중에서 $2-\sqrt{2}$ 를 나타내는 대응점으로 알맞은 것을 고르면?

) A ② B

17. $A = \sqrt{\frac{5}{169}}$, $B = \frac{\sqrt{5}}{3}$, $C = \sqrt{1.25}$ 일 때, A, B, C 를 작은 순서대로 나열한 것은?

 \bigcirc B, A, C


② A, C, B

 \bigcirc C, B, A

① A, B, C

4 C, A, B

18. 다음 그림과 같은 직사각형 모양의 공원에 폭이 2 m 인 산책로를 만들었다. 산책로를 제외한 공원의 넓이는?

①
$$(6a^2 - 6a + 4)$$
 m² ② $(6a^2 - 12a + 6)$ m²

③ $(6a^2 - 20a + 6)$ m² ④ $(6a^2 - 20a + 16)$ m²

 \bigcirc $(6a^2 - 25a + 16) \text{ m}^2$

19. 다음 제곱근표를 이용하여 $\sqrt{55}$ 의 값을 구하면?

수	0	1	2	3	4	5
2.0	1.41	1.41	1.42	1.42	1.42	1.43
2.1	1.44	1.45	1.45	1.45	1.46	1.46
2.2	1.48	1.48	1.49	1.49	1.49	1.50
2.3	1.51	1.52	1.52	1.52	1.53	1.53
2.4	1.54	1.55	1.55	1.55	1.56	1.56

5.93

② 7.56

③ 7.50

(4) 7.40

 \bigcirc 6.19

20. x = a(a+5)일 때, (a-1)(a+2)(a+3)(a+6)을 x에 관한 식으로 나타내면?

(5) $x^2 - 12x + 36$

(3) $x^2 + 6$

(2) $x^2 - 6$

(1) $x^2 - 36$

(4) $x^2 + 36$