
다음 중 평행사변형의 정의인 것은? ① 두 쌍의 대변이 각각 평행한 사각형이다. ② 두 쌍의 대변의 길이가 각각 다른 사각형이다. ③ 두 쌍의 대각의 크기가 각각 같은 사각형이다. ④ 두 대각선이 서로 다른 것을 이등분하지 않는 사각형이다. ⑤ 한 쌍의 대변이 평행하고 그 길이가 같은 사각형이다.

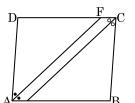
다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 말로 알맞은 것은?

평행사변형 ABCD에 점 B와 점 D를 이으면 △ABD와 △CDB 에서 ∠ABD = ∠CDB (엇각) ··· ⑤ ∠ADB = ∠CBD (엇각) ··· ⓒ 는 공통 ... @ \bigcirc , \bigcirc , \bigcirc 에 의해서 $\triangle ABD \equiv \triangle CDB$ (ASA 합동) $\therefore \overline{AB} = \overline{CD}, \overline{AD} = \overline{BC}$

② <u>BC</u>

 $\overline{3}$ \overline{BD}

(4) <u>DC</u> \bigcirc DA


다음은 평행사변형 ABCD 의 각 변의 중점을 E, F, G, H 라 할 때, □EFGH 는 □ 임을 증명하는 과정이다. ㄱ~ㅁ에 들어갈 것으로 옳지 않은 것은?

ΔEBF = ΔGDH (<u> </u>
∴ EF = ⊏
△AEH ≡ △CGF (□ 합동)
$\Box \Box = \overline{\mathrm{EH}}$
따라서 □EFGH 는 ㄱ 이다.

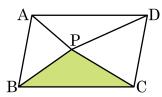
④ ⊒: SAS

- ① ㄱ: 평행사변형
- ② L: ASA ③ □: GH
- ⑤ □: GF

둘레의 길이를 구하여라.

ਪ: cm

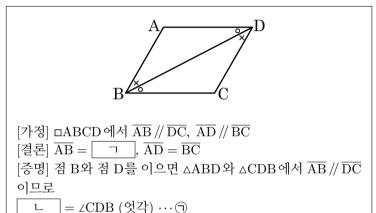
다음 그림과 같이 평행사변형 ABCD 에서 $\angle A$, $\angle C$ 의 이등분선이 변 CD, BA 와 만나는 점을 각각 E, F 라 할 때, $\overline{AF}=8$ cm, $\overline{DF}=6$ cm, $\overline{AB}=7$ cm 이다. 사각형 AECF 의


5.

다음 그림과 같이 평행사변형 ABCD의 내부에 임의의 한 점 P를 잡았다. $\triangle PAD = 24 \text{cm}^2$, $\triangle PAB = 18 \text{cm}^2$, $\triangle PBC = 45 \text{cm}^2$ 일 때,

 ΔPCD 의 넓이= cm^2 이다. 빈 칸을 채워넣어라.

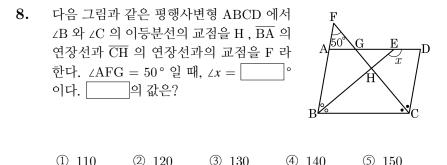
6. 다음 그림과 같이 평행사변형 ABCD의 넓이가 100cm²이고, ΔPAD의 넓이가 24cm²일 때, 어두운 부분의 넓이는 얼마인가?

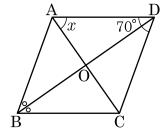

 \bigcirc 24cm²

 $2 25 cm^2$

 $3) 26 \mathrm{cm}^2$

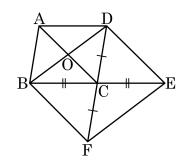
 4.28cm^2 5.0cm^2


7. 다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. ㄱ ~ ㅁ에 들어갈 것으로 옳지 <u>않은</u> 것은?


AD//BC 이므로 ∠ADB = ☐ (엇각) ···ⓒ ㄹ □는 공통 ···ⓒ

①, ①, ②에 의해서 $\triangle ABD \equiv \triangle CDB$ (\Box 합동) $\therefore \overline{AB} = \overline{CD}, \overline{AD} = \overline{BC}$

 $\textcircled{4} = : \overline{BD}$ 5 = : ASA

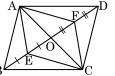


9. 다음 그림의 평행사변형 ABCD 에서 \angle ABD = \angle CBD , \angle ADC = 70° 일 때, \angle x 의 크기는?

① 30° ② 45° ③ 55° ④ 60° ⑤ 70°

10. 다음 그림과 같이 평행사변형 ABCD의 두변 \overline{BC} , \overline{DC} 를 점 C쪽으로 연장하여 $\overline{BC} = \overline{CE}$, $\overline{DC} = \overline{CF}$ 가 되게 점 E, F를 잡을 때 $\Box BFED$ 가 평행사변형이 되는 조건을 보기에서 모두 골라라.

H 7]

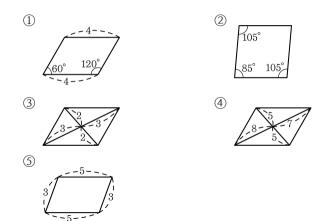

>	답:	

납:	

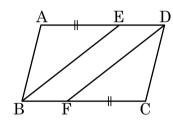
ᆸ.	

중점을 각각 E, F 라 할 때, 다음 중 옳지 <u>않은</u> 것은?

11. 다음 그림과 같이 평행사변형 ABCD 에서 두 대각선의 교점을 O 라 하고, BO. DO 의


①
$$\overline{AE} = \overline{CF}$$
 ② $\overline{OE} = \overline{OF}$

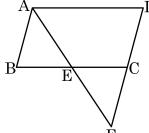
 \bigcirc \angle OEC = \angle OFA


 \bigcirc $\angle OAE = \angle BAE$

 $\overline{3} \overline{AF} / \overline{EC}$

12. 다음 중 평행사변형인 것을 모두 고르면?

13. 다음 평행사변형 ABCD에 대해 ĀĒ = FC가 되도록 점 E, F를 잡고 또 다른 □EBFD를 그렸다. □EBFD가 평행사변형이 될 때, 그 이유로 가장 적절한 것을 골라라.



 \bigcirc $\overline{EB} // \overline{DF}$

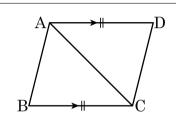
A

14. 주어진 그림은 평행사변형 ABCD 에서

변형 ABCD 의 넓이를 구하여라.

E는 선분 BC의 중점 \triangle ABE = 8cm², \triangle FBE = 8cm² 일때, 평행사

□ABCD의 넓이를 구하여라. ► cm²


다음 그림과 같이 평행사변형 ABCD의 내 부에 한 점 P를 잡았다. ΔPAB의 넓이 가 16 cm², ΔPCD의 넓이가 18 cm²일 때, 다음과 같은 평행사변형 ABCD의 넓 이는 $30 \,\mathrm{cm}^2$ 이고, $\triangle \mathrm{CDP} = 6 \,\mathrm{cm}^2$. $\triangle ADP = 8 \text{ cm}^2$ 일 때, $\triangle ABP =$ $a \, \mathrm{cm}^2$, $\triangle \mathrm{BCP} = b \, \mathrm{cm}^2$ 이다. 이 때. b - a의 값을 구하여라.

다음 그림과 같은 평행사변형 ABCD에서 /B 의 이등분선이 \overline{AD} 와 만나는 점을 $E \cdot \overline{CD}$ 의 연장선과 만나는 점을 F 라고 한다. $\overline{AB} = 7$. $\overline{FD} = 3$ 일 때. \overline{BC} 의 길이를 구하여라.

18. 다음은 '한 쌍의 대변이 평행하고 그 길이가 같은 사각형은 평행사 변형이다.' 를 증명하는 과정이다. 밑줄 친 부분 중 <u>틀린</u> 곳을 모두 고르면?

가정) $\square ABCD$ 에서 $\overline{AD} / / \overline{BC}$, $\neg . \overline{AD} = \overline{BC}$

결론) $\overline{AB} // \overline{DC}$

증명) 대각선 AC를 그으면

 $\triangle ABC$ 와 $\triangle CDA$ 에서 \neg . $\overline{AD} = \overline{BC}$ (가정) \cdots \neg

나. ∠DCA = ∠BAC (엇각) ····ⓒ

 \Box . $\overline{\mathrm{AC}}$ 는 공통 \cdots \Box

 \bigcirc , \bigcirc , \bigcirc 에 의해서 $\triangle ABC \equiv \triangle CDA (ㄹ. <u>SAS</u> 합동)$

 \Box . $\angle DAC = \angle BCA$ 이므로

 $\therefore \overline{AB} / / \overline{DC}$

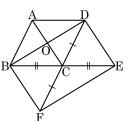
따라서 두 쌍의 대변이 각각 평행하므로 □ABCD는 평행사변형이다.

1) ¬

2 L

③ ⊏

④ =


(5) _□

19. 평행사변형 ABCD 의 대각선 AC 위에 두 점 E, F를 각각 $\overline{AE} = \overline{EO}$, $\overline{OF} = \overline{FC}$ 가 되게 잡을 때, 평행사변형 ABCD 의 넓이는 평행사변형 EBFD 의 넓이의 몇 배인지 구 하여라

▶ 답: 배

구하여라.

20.

다음 그림과 같이 평행사변형 ABCD 에서

 $\overline{BC} = \overline{CE}$, $\overline{DC} = \overline{CF}$ 가 되도록 \overline{BC} . \overline{DC} 의 연장선 위에 각각 점 E, F를 잡았다. $\triangle ADC$ 의 넓이가 7 cm² 일 때, □BFED 의 넓이를