- 1. 다음 곱셈공식을 전개한 것 중 바른 것은?
 - ① $(x-y-1)^2 = x^2 + y^2 + 1 2xy 2x 2y$ $(a+b)^2(a-b)^2 = a^4 - 2a^2b^2 + b^4$
 - $(-x+3)^3 = x^3 9x^2 + 27x 27$
 - $(a-b)(a^2+ab-b^2) = a^3-b^3$
 - ⑤ $(p-1)(p^2+1)(p^4+1) = p^{16}-1$
 - ① $(x-y-1)^2 = x^2 + y^2 + 1 2xy 2x + 2y$ ③ $(-x+3)^3 = -x^3 + 9x^2 27x + 27$

해설

- $(a-b)(a^2+ab+b^2) = a^3-b^3$ $(5)(p-1)(p+1)(p^2+1)(p^4+1) = p^8-1$

2. 등식 $x^2-2x+3=a+b(x-1)+c(x-1)^2$ 이 x에 관한 항등식일 때, $a^2+b^2+c^2$ 의 값을 구하여라.

▶ 답:

▷ 정답: 5

해설

 $x^2 - 2x + 3 = a + b(x - 1) + c(x - 1)^2$ x = 1을 대입하면 $2 = a \cdots$ ①

x = 0을 대입하면 3 = a - b + c ·····② x = 2를 대입하면 3 = a + b + c ·····③

①을 ②, ③에 대입하여 정리하면

b-c = -1, b+c = 1

두 식을 연립하면 b = 0, c = 1 $\therefore a^2 + b^2 + c^2 = 4 + 0 + 1 = 5$

3. a, b는 정수이고, $ax^3 + bx^2 + 1$ 이 $x^2 - x - 1$ 로 나누어 떨어질 때, b의 값은?

 $\bigcirc -2$ ② -1 ③ 0 ④ 1 ⑤ 2

전개했을 때 양변의 최고차항과 상수항이 같아야 하므로

 $ax^3 + bx^2 + 1$

 $= (x^2 - x - 1)(ax - 1)$

 $= ax^3 - (1+a)x^2 + (1-a)x + 1$

양변의 계수를 비교하면

-(1+a) = b, 1-a = 0∴ a = 1, b = -2

4. $x^3 + ax^2 + bx - 4$ 는 x - 2로 나누어 떨어지고 x + 1로 나누면 나머지가 6이다. a - b의 값을 구하여라.

▶ 답:

▷ 정답: 11

해설

 $f(x) = x^3 + ax^2 + bx - 4$ 라 하면 $f(2) = 4a + 2b + 4 = 0 \cdots$

 $f(-1) = a - b - 5 = 6 \cdot \dots \cdot \square$

①, ⓒ에서 a=3, b=-8∴ a-b=11

▶ 답:

 ▶ 정답: 2000

a = 1999라 하면 $1998 \times 1999 + 1 = (a-1)a + 1 = a^2 - a + 1$ $\therefore \frac{1999^3 + 1}{1998 \times 1999 + 1} = \frac{a^3 + 1}{a^2 - a + 1}$

 $= \frac{(a+1)(a^2 - a + 1)}{a^2 - a + 1}$ = a + 1 = 2000

6. $i(x+2i)^2$ 이 실수가 되는 실수 x 의 값을 정하면? (단, $i=\sqrt{-1}$)

① ± 1 ② ± 2 ③ ± 3 ④ ± 4 ⑤ ± 5

 $i(x+2i)^2 = i(x^2+4ix-4) = x^2i-4x-4i$ $= -4x+(x^2-4)i$ 실수가 되려면 허수부분이 0이면 된다.

실구가 되려면 어구무분이 0이면 된다. ∴ $x^2 - 4 = 0$ ⇒ $x = \pm 2$

해설

- 7. 실수 x, y에 대하여 (1+i)x + (i-1)y = 2i일 때, x + y의 값은? (단, $i = \sqrt{-1}$)
 - ① 1
- ②2 33 44 55

(1+i)x + (i-1)y = 2i

해설

(x-y) + (x+y)i = 2i

좌변과 우변이 같아야 하므로, x-y=0, x+y=2두 식을 연립하여 풀어주면, x = 1, y = 1

 $\therefore x + y = 2$

8.
$$z = \frac{2}{1-i}$$
 일 때, $2z^2 - 4z - 1$ 의 값을 구하면?

① -1 ② 2 ③ -3 ④ 4 ⑤ -5

$$z = \frac{2}{1-i} = 1+i$$

$$\therefore 2z^2 - 4z - 1 = 2(1+i)^2 - 4(1+i) - 1$$

$$= 4i - 4 - 4i - 1$$

$$= -5$$

$$z = 1 + i, z - 1 = i$$

양변을 제곱하고 정리하면
 $z^2 - 2z = -2$
 $2z^2 - 4z - 1$
 $= 2(z^2 - 2)z - 1$
 $= -4 - 1 = -5$

- 등식 (1+i)z + (2z-3i)i = 0 을 만족하는 복소수 z 는? 9.
- 3 9i
- ① 3+9i ② -3+9i② $-\frac{3}{10}-\frac{9}{10}i$ ② $-\frac{3}{10}+\frac{9}{10}i$

해설

z = a + bi (a, b 는 실수)로 놓으면 $(1+i)(a+bi) + \{2(a+bi) - 3i\} i = 0$

- (a+bi+ai-b) + (2ai-2b+3) = 0
- (a-3b+3) + (3a+b)i = 0복소수가 서로 같을 조건에 의하여
- a 3b + 3 = 0, 3a + b = 0두 식을 연립하여 풀면

- $a = -\frac{3}{10}, b = \frac{9}{10}$ $\therefore z = -\frac{3}{10} + \frac{9}{10}i$

10. 다음 <보기>에서 계산 중 잘못된 것을 모두 고르면? (단, $i=\sqrt{-1}$

I. $\sqrt{-3}\sqrt{-3} = \sqrt{(-3)\cdot(-3)} = \sqrt{9} = 3$ II. $\sqrt{5}\sqrt{-2} = \sqrt{5}\times(-2) = \sqrt{-10} = \sqrt{10}i$ III. $\frac{\sqrt{2}}{\sqrt{-6}} = \sqrt{\frac{2}{-6}} = \sqrt{-\frac{1}{3}} = \sqrt{\frac{1}{3}}i$ IV. $\frac{\sqrt{-10}}{\sqrt{2}} = \sqrt{\frac{-10}{2}} = \sqrt{-5} = \sqrt{5}i$

① I, I ④ II, IV

② I, II ⑤ II, IV

3 I, II, IV

I. $\sqrt{-3}\sqrt{-3} = \sqrt{3}i\sqrt{3}i = \sqrt{9}i^2 = -3$: 옳지 않다.

II. $\sqrt{5}\sqrt{-2} = \sqrt{5}\sqrt{2}i = \sqrt{10}i$:. 옳다.

 $\mathbb{II}. \frac{\sqrt{2}}{\sqrt{-6}} = \frac{\sqrt{2}}{\sqrt{6}i} = \sqrt{\frac{2}{6}} \cdot \frac{i}{i^2} = -\sqrt{\frac{1}{3}}i$

: 옳지 않다.

 $\text{IV. } \frac{\sqrt{-10}}{\sqrt{2}} = \frac{\sqrt{10}i}{\sqrt{2}} = \sqrt{\frac{10}{2}}i = \sqrt{5}i$

∴ 옳다.

- **11.** 두 다항식 A, B 에 대하여 $A+B=-x^3-2x^2+4x+5$, $2A-B=4x^3-x^2-x+1$ 일 때, 두 다항식 A, B 를 구하면?
 - ① $A = x^3 + x^2 + x + 2$, $B = -2x^3 3x^2 + 3x + 3$ ② $A = x^3 - x^2 + x + 2$, $B = -2x^3 - x^2 + 3x + 3$

 - ③ $A = x^3 x^2 + x 2$, $B = -2x^3 x^2 + 3x + 7$
 - ① $A = x^3 x^2 x + 2$, $B = -2x^3 x^2 + 5x + 3$ ③ $A = 3x^3 - 3x^2 + 3x + 6$, $B = -4x^3 + x^2 + x - 1$

 $A + B = -x^3 - 2x^2 + 4x + 5 \cdots \bigcirc$

해설

 $2A - B = 4x^3 - x^2 - x + 1 \cdots \bigcirc$ $(\bigcirc + \bigcirc) \div 3 : A = x^3 - x^2 + x + 2$

 $(2 \bigcirc - \bigcirc) \div 3 : B = -2x^3 - x^2 + 3x + 3$

12. 두 다항식 A = a + 2b, B = 2a + 3b일 때, 2A + B를 구하는 과정에서 사용된 연산법칙 중 옳지 <u>않은</u> 것을 골라라.

답:▷ 정답: ②

해설

② 2a + (2a + 4b) + 3b = (2a + 2a) + (4b + 3b): 결합법칙

13. 다음 _____ 안에 알맞은 수를 차례대로 써 넣어라.

 $(x^3 + 4x^2 + 3x - 2) \div (x^2 + x +) = x + 2$

▶ 답:

▶ 답:

▶ 답:

▷ 정답: 2

▷ 정답: 1

▷ 정답: -1

해설

 $(x^3 + 4x^2 + 3x - 2) \div A = x + 2$ $\therefore A = (x^3 + 4x^2 + 3x - 2) \div (x + 2)$

∴ A = x² + 2x - 1 이므로
 □안에 알맞은 수는 차례대로 1, 2, -1 이다.

- **14.** $(a+b)(a^2-ab+b^2)(a^3-b^3)$ 의 전개식으로 옳은 것은?

 - ① $a^3 + b^3$ ② $a^6 + b^6$ $\textcircled{4} \ a^9 + b^9$ $\textcircled{5} \ a^9 - b^9$
- $3a^6 b^6$

(준식)= $(a^3 + b^3)(a^3 - b^3) = a^6 - b^6$

- **15.** $(-2x^3 + x^2 + ax + b)^2$ 의 전개식에서 x^3 의 계수가 -8일 때, a 2b의 값은?

 - ① -6 ② -4 ③ -2 ④ 0 ⑤ 2

전개할 때 삼차항은 일차항과 이차항의 곱, 삼차항과 상수항의

곱이 각각 2개씩 나온다. $(-2x^3 \times b) \times 2 + (x^2 \times ax) \times 2 = (-4b + 2a)x^3$

2a - 4b = -8

 $\therefore a - 2b = -4$

16. a = 2004, b = 2001일 때, $a^3 - 3a^2b + 3ab^2 - b^3$ 의 값은?

① 21

② 23

③ 25

⑤ 29

준 식은 $(a-b)^3$ 이다. a - b = 2004 - 2001 = 3

 $\therefore (a-b)^3 = 3^3 = 27$

17. a+b+c=0, $a^2+b^2+c^2=1$ 일 때, $a^2b^2+b^2c^2+c^2a^2$ 의 값은?

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$$
에 대입하면
$$ab+bc+ca = -\frac{1}{2}$$
$$(ab+bc+ca)^2 = a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a+b+c)$$
$$\frac{1}{4} = a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a+b+c)$$

$$(ab + bc + ca)^2 = a^2b^2$$

$$\frac{1}{4} = a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a+b+c)$$

따라서
$$a^2b^2 + b^2c^2 + c^2a^2 = \frac{1}{4}$$

18. k의 값에 관계없이 $(3k^2+2k)x-(k+1)y-(k^2-1)z$ 의 값이 항상 1일 때, x + y + z의 값은?

① -3 ② 0 ③ 3 ④ 6 ⑤ 8

해설 주어진 식을 k에 대하여 정리하면

 $k^{2}(3x - z) + k(2x - y) - (y - z) = 1$ 위 식이 k의 값에 관계없이 성립하므로 k에 대한 항등식이다.

 $\int 3x - z = 0 \quad \cdots \quad \bigcirc$

 $\begin{cases} 2x - y = 0 & \cdots \\ \end{cases}$ $z-y=1 \quad \overline{} \quad \cdots \quad \bigcirc$

⊙, ⓒ, ⓒ을 연립하여 풀면

 $\therefore x + y + z = 6$

x = 1, y = 2, z = 3

19. $\frac{2x + ay - b}{x - y - 1}$ 가 $x - y - 1 \neq 0$ 인 어떤 x, y의 값에 대하여도 항상 일정한 값을 가질 때, a - b의 값을 구하여라.

답:

▷ 정답: -4

 $\frac{2x + ay - b}{x - y - 1} = k$ 라 놓으면 2x + ay - b = k(x - y - 1)

x, y에 대하여 정리하면,

(2-k)x + (a+k)y - b + k = 0위의 식이 x, y에 대한 항등식이어야 하므로

 $2 - k = 0, \ a + k = 0, \ -b + k = 0$ $\therefore k = 2, \ a = -2, \ b = 2$

 $\therefore a-b=-4$

20. 다항식 f(x) 를 2x-1로 나누면 나머지는 -4이고, 그 몫을 x+2로 나누면 나머지는 2이다. 이때, f(x)를 x+2로 나눌 때의 나머지를 구하시오.

답:▷ 정답: -14

해설

f(x) = (2x-1)Q(x) - 4라 하면 f(-2) = -5Q(-2) - 4

그런데 Q(-2) = 2 이므로 f(-2) = -14

21. x의 다항식 f(x)를 x+1로 나눌 때, 나머지가 2이다. 이 때, $(x^2-x+3) f(x)$ 를 x+1로 나눈 나머지를 구하면?

① 10 ② 6 ③ 0 ④ 30 ⑤ 12

해설 f(-1) = 2 $(x^2 - x + 3) f(x) = (x + 1)Q(x) + R$ x = -1 대입 $\therefore R = 5f(-1) = 5 \times 2 = 10$

22. 다항식 $2x^3 + 3x^2 + ax + b$ 가 x + 2로 나누어 떨어질 때, 2a - b의 값은?

① 28

- ② 12 ③ 6 ④ -4
- ⑤ -12

준식을 f(x)라 하면 f(-2) = 0이므로

해설

-16 + 12 - 2a + b = 0에서 2a - b = -4

23. x^2+ax-9 와 x^2+bx+c 의 합은 $2x^2-4x-6$, 최소공배수는 x^3-x^2-9x+9 이다. a-b+c의 값을 구하여라. (단, a, b, c는 상수이다.)

▶ 답: 정답: 7

해설

 $A = x^2 + ax - 9 = Gp$

 $B = x^2 + bx + c = Gq$ 라 하면 $A + B = (p+q)G = 2x^2 - 4x - 6 = 2(x+1)(x-3)$ $L = pqG = x^3 - x^2 - 9x + 9 = x^2(x - 1) - 9(x - 1)$ $= (x-1)(x^2-9) = (x-1)(x+3)(x-3)$

따라서, G = x - 3, p = x + 3, q = x - 1이다. $\therefore A = (x+3)(x-3) = x^2 - 9$

 $B = (x-1)(x-3) = x^2 - 4x + 3$

 $\therefore a = 0, b = -4, c = 3$ $\therefore a - b + c = 7$

 ${f 24.}$ x에 대한 항등식 $(1+2x-x^2)^5=a_0+a_1x+a_2x^2+\cdots+a_{10}x^{10}$ 에서 $3a_0 + a_2 + a_4 + \cdots + a_{10}$ 의 값은?

1)2

② 3 ③ 4 ④ 5 ⑤ 6

i) 항등식의 상수항 : $a_0 = 1$

ii) 항등식에 x = 1, x = -1을 대입하여 식을 만든다. x=1을 대입하면 $2^5=a_0+a_1+\cdots+a_{10}\cdots$ ①

x = -1을 대입하면 $(-2)^5 = a_0 - a_1 + a_2 - a_3 \cdots + a_{10} \cdots$ ②

① + ②: $0 = 2(a_0 + a_2 + a_4 + \dots + a_{10})$

 $\therefore a_0 + a_2 + a_4 + \dots + a_{10} = 0$

 $3a_0 + a_2 + a_4 + \cdots + a_{10} = 2(\because a_0 = 1)$

25. x-1로 나누면 나머지가 3, x-2로 나누면 나머지가 7, x-3으로 나누면 나머지가 13이 되는 가장 낮은 차수의 다항식을 f(x)라 할 때, f(-3)의 값은?

① 7 ② 10 ③ 11 ④ 12 ⑤ 13

 $f(x) = k(x-1)(x-2)(x-3) + ax^2 + bx + c$ $f(1) = a + b + c = 3 \quad \dots \quad \boxed{)}$

 $f(2) = 4a + 2b + c = 7 \quad \cdots \quad \textcircled{2}$

f(3) = 9a + 3b + c = 13

①, ②, ③을 연립하여 풀면 a=1, b=1, c=1

f(x) 가 가장 낮은 차수가 되려면 k = 0 $\therefore f(x) = x^2 + x + 1$,

해설

 $f(-3) = (-3)^2 + (-3) + 1 = 7$

26. x^4-6x^2+1 을 인수분해 하였더니 $(x^2+ax+b)(x^2+cx+d)$ 가 되었다. 이 때, a+b+c+d의 값을 구하면?

 $\bigcirc -2$ ② 2 ③ -1 ④ 1 ⑤ 4

 $x^4 - 6x^2 + 1 = (x^4 - 2x^2 + 1) - 4x^2$ $= (x^{2} - 1)^{2} - (2x)^{2}$ $= (x^{2} + 2x - 1)(x^{2} - 2x - 1)$ $= (x^{2} + ax + b)(x^{2} + cx + d)$

 $\therefore a+b+c+d=-2$

27. 모든 모서리의 길이의 합이 60이고, 대각선의 길이가 $\sqrt{77}$ 인 직육면 체의 겉넓이는?

① 88

② 100 ③ 124

4 148 **5** 160

직육면체의 가로의 길이, 세로의 길이, 높이를 각각 x, y, z라고

해설

하면 4(x+y+z) = 60에서 x+y+z = 15또, 대각선의 길이는 $\sqrt{x^2 + y^2 + z^2} = \sqrt{77}$ 이므로 $x^2 + y^2 + z^2 = 77$ 이 때, 직육면체의 겉넓이는 2(xy + yz + zx)이고 $x^2 + y^2 + z^2 = (x + y + z)^2 - 2(xy + yz + zx)$ 이므로

 $77 = 15^2 - 2(xy + yz + zx)$ $\therefore 2(xy + yz + zx) = 225 - 77 = 148$

따라서, 직육면체의 겉넓이는 148이다.

28. 두 다항식 $x^3 + px^2 + qx + 1$ 과 $x^3 + qx^2 + px + 1$ 의 최대공약수가 x에 대한 일차식일 때, 상수 p, q에 대하여 p+q의 값을 구하여라.

▶ 답: ▷ 정답: -2

 $A = x^3 + px^2 + qx + 1, B = x^3 + qx^2 + px + 1$ 이라고 하면 $A - B = (x^3 + px^2 + qx + 1) - (x^3 + qx^2 + px + 1)$ $= (p-q)x^2 - (p-q)x$ = (p-q)x(x-1)

이 때, A-B는 두 다항식 A, B의 최대공약수를 인수로 갖는다.

그런데, p = q이면 A = B가 되어 최대공약수가 x에 대한 삼 차식이 되므로 최대공약수가 x에 대한 일차식이라는 조건에 모순이다. 또한, 두 다항식 A, B의 상수항이 모두 1이므로 x를 인수로 가질 수 없다.

따라서, x-1이 두 다항식 A, B의 최대공약수이고, 최대공약수는 A, B의 인수이므로 x = 1을 두 다항식에 각각 대입하면 그 값이 0이어야 한다. 1 + p + q + 1 = 0, 1 + q + p + 1 = 0

 $\therefore p + q = -2$

29. 복소수 α , β 에 대한 다음 보기의 설명 중 옳은 것을 모두 고르면? (단, $\overline{\alpha}$ 는 α 의 켤레복소수이다.)

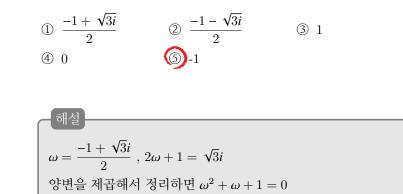
① $\alpha + \overline{\alpha}$ 는 실수이다. © $\alpha - \overline{\alpha}$ 는 허수이다. © α^2 이 실수이면 α 도 실수이다.

 $\alpha=a+bi,\;\beta=c+di\;(a,\;b,\;c,\;d$ 는 실수)라 하면

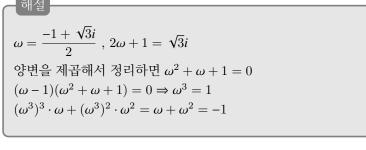
③ α + ᾱ = (a + bi) + (a - bi) = 2a (실수)
 ∴ 참
 ⑥ α 가 실수이면 α = ᾱ 이므로 α - ᾱ = 0 이다.
 따라서 α - ᾱ 가 반드시 허수인 것은 아니다.
 ∴ 거짓
 ⑥ i² = -1 은 실수이지만 i 는 순허수이다.
 ∴ 거짓
 ② α + β = (a + c) + (b + d)i

= $\overline{\alpha} \cdot \overline{\beta}$:. 참

해설



30. $\left(\frac{-1+\sqrt{3i}}{2}\right)^{10} + \left(\frac{-1+\sqrt{3i}}{2}\right)^{8}$ 값을 구하면?



- **31.** $-a^2(b-c)-b^2(c-a)-c^2(a-b)$ 을 인수분해했을 때, 각 인수들의 합이 될 수 <u>없는</u> 것은?
 - \bigcirc a+b
- ② 2a 2b ③ 2b 2a
- $\textcircled{4} \ 2b 2c$ $\textcircled{5} \ 0$

a에 대한 내림차순으로 정리한다.

해설

 $-a^{2}(b-c)-b^{2}(c-a)-c^{2}(a-b)$ $= (c - b)a^2 - (c^2 - b^2)a + bc^2 - b^2c$

- $= (c-b)a^2 (c-b)(c+b)a + bc(c-b)$
- $= (c b) \{a^2 (c + b)a + bc\}$
- $=(c-b)(a-b)(a-c)\cdots \bigcirc$ $=(a-b)(b-c)(c-a)\cdots$
- $=(b-c)(b-a)(a-c)\cdots \bigcirc$
- $=(c-a)(b-c)(b-a)\cdots$ \bigcirc 식 : 세항을 모두 더하면 2a – 2b
- ©식: 세항을 모두 더하면 0
- ⓒ식 : 세항을 모두 더하면 2b-2c②식: 세항을 모두 더하면 2b − 2a

32. a+b+c=0, $abc\neq 0$ 일 때, $\frac{a^2+b^2+c^2}{a^3+b^3+c^3}+\frac{2}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$ 의 값을 구하여라.

답:

▷ 정답: 0

$$a^{3} + b^{3} + c^{3} - 3abc$$

$$= (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

$$= 0(\because a + b + c = 0)$$

$$\therefore a^{3} + b^{3} + c^{3} = 3abc$$

$$\therefore (\stackrel{\text{Z}}{\leftarrow} A) = \frac{a^{2} + b^{2} + c^{2}}{3abc} + \frac{2}{3} \left(\frac{bc + ca + ab}{abc} \right)$$

$$= \frac{(a + b + c)^{2}}{3abc} = 0$$

- **33.** 두 다항식 $x^2 x + p$ 와 $x^3 + x^2 + x + p + 3$ 이 사차식의 최소공배수를 갖도록 p의 값을 정하면?
 - $\bigcirc -2$ 3 -3 4 -4 5 -5 ① -1

다항식 A, B 의 최소공배수 L, 최대공약수를 G 라 하면

해설

AB = GL 에서 G 는 1 차식이다. (:: AB 는 5차식, G 는 4차식) \therefore 최대공약수는 x + 1, x + 1은 $x^2 - x + p$ 의 약수이므로 2 + p = 0 $\therefore p = -2$