1. 다음 보기에서 옳은 것을 모두 고르면?

- 보기 -

- ⊙ −3 의 제곱근은 존재하지 않는다. © √9 의 제곱근은 ±3 이다.
- © $\sqrt{25}$ 는 $\pm \sqrt{5}$ 와 같다.
- ② 제곱근 10 은 $\sqrt{10}$ 이다.

답:

▶ 답:

▷ 정답: ⑤

▷ 정답: ②

 \bigcirc $\sqrt{9}$ 의 제곱근은 $\pm\sqrt{3}$ 이다. $\bigcirc \sqrt{25}$ 는 5 와 같다.

2. x 의 제곱근은 $\pm \sqrt{3}$ 이다. x의 값은 얼마인지 구하여라.

답:

 ▷ 정답:
 x = 3

-해설 제곱근의 값이 + √3, - √3

2 개이므로 x 는 양수이고, $\pm \sqrt{3}$ 를 제곱한 값 x=3 이다.

3. 2 < x < 5 일 때, $\sqrt{(x-2)^2} + \sqrt{(x-5)^2}$ 을 간단히 하여라.

▶ 답:

▷ 정답: 3

x-2 > 0 이고, x-5 < 0 이므로 (준식)= x-2-(x-5)=3

4. 다음 보기에서 무리수는 모두 몇 개인가?

 $\sqrt{0}$, $\sqrt{2} + \sqrt{3}$, 0.29, $\sqrt{19.6}$, $\sqrt{8}$, $\sqrt{144}$

① 1개 ② 2개 ③ 3개 ④ 4개 ⑤ 5개

 $\sqrt{0} = 0 (유리수)$

해설

 $\sqrt{2} + \sqrt{3}$: 순환하지 않는 무한소수(무리수) 0.29 (유리수)

√19.6 : 순환하지 않는 무한소수 (무리수)

 $\sqrt{8}$: 순환하지 않는 무한소수 (무리수) $\sqrt{144} = 12$ (유리수)

- 5. 다음 중 $\sqrt{2}$ 와 $\sqrt{3}$ 사이에 있는 수가 <u>아닌</u> 것은?

- ① $\frac{3}{2}$ ② $\sqrt{\frac{3}{2}}$ ③ $\frac{\sqrt{2} + \sqrt{3}}{2}$ ④ 1.6

 $\sqrt{2.13}$ 의 값을 A라 하고, $\sqrt{B}=1.552$ 일 때, A,B 의 값을 바르게 구한 6. 것은?

宁	0	1	2	3	•••
2.0	1.414	1.418	1.421	1.425	• • •
2.1	1.449	1.453	1.456	1.459	•••
2.2	1.483	1.487	1.490	1.493	•••
2.3	1.517	1.520	1.523	1.526	•••
2.4	1.549	1.552	1.556	1.559	•••

① A: 1.517, B: 2.32 ② A: 1.517, B: 2.41 ③ A: 1.459, B: 2.41

⑤ A: 1.414, B: 2.03

해설

표에서 2.13 을 찾으면 1.459 이므로 $\sqrt{2.13}=1.459$ 이고, 제

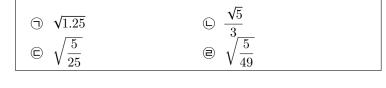
곱근의 값이 1.552인 것을 찾으면 2.41 이므로 $\sqrt{2.41}=1.552$ 이다.

7. 다음 중 옳지 <u>않은</u> 것은?

- ① -2 와 2 사이에는 정수가 3 개 있다.
- ② 두 자연수 1 과 2 사이에는 무수히 많은 유리수가 존재한다. ③ $\frac{1}{7}$ 은 순환하는 무한소수이다.
- 7 $\sqrt{3}$ 과 $\sqrt{8}$ 사이에는 무리수가 4 개 있다.
- ⑤ √7 과 5 사이에는 무수히 많은 무리수가 있다.

④ 무수히 많은 무리수가 있다.

8. 다음 네 개의 수를 큰 순서부터 나열한 것은?



- ① ¬>∪>□>B 2 ¬>□>D>B 3 ¬>B>∪>D 4 C>C>O>O>C

$$\bigcirc \frac{\sqrt{5}}{3}$$

$$\bigcirc \sqrt{5}$$

 $\sqrt{2}=a, \ \sqrt{3}=b$ 일 때, $\sqrt{54}$ 를 a,b 에 관한 식으로 나타낸 것은? 9.

 \bigcirc ab^3

① a+b

② $a + b^3$ \bigcirc a^3b

③ a^2b^3

해설

 $\sqrt{54} = \sqrt{2 \times 3 \times 3 \times 3} = \sqrt{2}(\sqrt{3})^3 = ab^3$

10. 다음 식의 계산 결과가 <u>틀린</u> 것은?

②
$$\sqrt{12} + \sqrt{27} - \sqrt{48} = \sqrt{3}$$

① $\sqrt{24} + 5\sqrt{6} = 7\sqrt{6}$

$$\sqrt{5}$$
 $-\frac{\sqrt{45}}{3}$ $+\frac{\sqrt{5}}{3}$ $=-\frac{1}{3}$

$$5\sqrt{3} + \frac{15}{\sqrt{3}} - 2\sqrt{75} = 0$$

$$\sqrt{3}$$

①
$$\sqrt{24} + 5\sqrt{6} = 2\sqrt{6} + 5\sqrt{6} = 7\sqrt{6}$$

② $\sqrt{12} + \sqrt{27} - \sqrt{48} = 2\sqrt{3} + 3\sqrt{3} - 4\sqrt{3} = \sqrt{3}$
③ $\frac{\sqrt{5}}{3} - \frac{\sqrt{45}}{2} + \frac{\sqrt{5}}{6}$

$$= \frac{2\sqrt{5}}{6} - \frac{9\sqrt{5}}{6} + \frac{\sqrt{5}}{6}$$

$$= -\frac{6\sqrt{5}}{6} = -\sqrt{5}$$
(4) $\sqrt{12} + \sqrt{50} - \sqrt{3} + 2\sqrt{5}$

$$= 5\sqrt{3} + \frac{15\sqrt{3}}{3} - 10\sqrt{3}$$

 $= 5\sqrt{3} + 5\sqrt{3} - 10\sqrt{3} = 0$

11.
$$\frac{\sqrt{5} - \sqrt{6}}{\sqrt{2}} - \frac{\sqrt{2} - \sqrt{15}}{\sqrt{5}} = a\sqrt{3} + b\sqrt{10}$$
일 때, 유리수 a, b 에 대하여 $a + b$ 의 값은?

①
$$-\frac{17}{10}$$
 ② 0 ③ $\frac{3}{10}$ ④ $\frac{13}{10}$ ⑤ $\frac{23}{10}$

지 전
$$\frac{\sqrt{5} - \sqrt{6}}{\sqrt{2}} - \frac{\sqrt{2} - \sqrt{15}}{\sqrt{5}}$$

$$= \frac{(\sqrt{5} - \sqrt{6})\sqrt{5} - (\sqrt{2} - \sqrt{15})\sqrt{2}}{\sqrt{10}}$$

$$= \frac{5 - \sqrt{30} + \sqrt{30} - 2}{\sqrt{10}}$$

$$= \frac{3}{\sqrt{10}}$$

$$= \frac{3\sqrt{10}}{10}$$

$$\therefore a = 0, b = \frac{3}{10}$$
 이므로 $a + b = \frac{3}{10}$

12. 등식 $7+5\sqrt{3}+5x-2y=3\sqrt{3}x-\sqrt{3}y-5$ 를 만족하는 유리수 x, y 의 값을 구하여라.

▶ 답:

▶ 답:

➢ 정답: x = 22

▷ 정답: y = 61

 $7 + 5\sqrt{3} + 5x - 2y = 3\sqrt{3}x - \sqrt{3}y - 5$ $(7 + 5x - 2y + 5) + (5 - 3x + y)\sqrt{3} = 0$

 $5x - 2y = -12 \Leftrightarrow y = \frac{5}{2}x + 6$

 $\therefore -3x + y = -3x + \frac{5}{2}x + 6$ $= -\frac{1}{2}x + 6$ = -5

 $-\frac{1}{2}x = -11$ $\therefore x = 22, y = 61$

13. $\sqrt{2} = 1.414$ 일 때, $\sqrt{5.5}$ 의 값을 소수 셋째 자리에서 반올림하여라.

▶ 답:

▷ 정답: 2.36

해설
$$\sqrt{5.5} = \sqrt{\frac{50}{9}} = \frac{5\sqrt{2}}{3} = \frac{5}{3} \times 1.414 = 2.36$$

14. 자연수 7 에 대하여 $\sqrt{7}$ 의 정수 부분을 f(7) 이라고 하자. 예를 들면 $2<\sqrt{7}<3$ 이므로 f(7)=2 라고 할 때, f(58)+f(66) 의 값을 구하여라.

▷ 정답: 15

▶ 답:

00.

해설

 $\sqrt{58}=7. imes imes imes$, $\sqrt{66}=8. imes imes imes$ 이므로 $f\left(58\right)+f\left(66\right)=7+8=15$

15. $\sqrt{196} \div \sqrt{(-2)^2} + \sqrt{(-3)^4} = x$, $2 \times \sqrt{4^2 \times (-2)^4} - \sqrt{225} = y$, $\sqrt{0.64} - \sqrt{0.01} = z$ 일 때, x + y + 10z 의 값을 구하여라.

답:

▷ 정답: 40

 $x = \sqrt{196} \div \sqrt{(-2)^2} + \sqrt{(-3)^4}$ $= 14 \div 2 + 9$ = 7 + 9 = 16 $y = 2 \times \sqrt{4^2 \times (-2)^4} - \sqrt{225}$ $= 2 \times 16 - 15$ = 32 - 15 = 17 $z = \sqrt{0.64} - \sqrt{0.01} = 0.8 - 0.1 = 0.7$ 따라서 x + y + 10z = 16 + 17 + 7 = 40 이다.

16. $\sqrt{90-x} - \sqrt{7+x}$ 의 값이 가장 큰 자연수가 되도록 하는 자연수 x의 값은?

① 5

- ②9 3 15 4 26 5 30

 $\sqrt{90-x}$, $\sqrt{7+x}$ 둘 다 자연수가 되어야 한다. $\sqrt{90-x}$ 가 최대

해설

 $\sqrt{7+x}$ 가 최소가 되려면 x=9 이어야 한다.

17. $\sqrt{3n}$ 이 2 와 4 사이의 수가 되게 하는 정수 n 의 개수는 몇 개인가?

① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

 $2 < \sqrt{3n} < 4$ 4<3n<16

 $\therefore n = 2, 3, 4, 5$

18. 다음 중 수직선에 나타낼 때, 가장 오른쪽에 있는 수는?

$$3 + \sqrt{3}$$
, $2\sqrt{3} - 1$, $1 + \sqrt{2}$, $\sqrt{3} - 2$, $6 - \sqrt{3}$

 $\bigcirc 3 + \sqrt{3}$

② $2\sqrt{3}-1$ $4 \sqrt{3} - 2$ $5 6 - \sqrt{3}$

 $31 + \sqrt{2}$

해설 ① $\sqrt{1} < \sqrt{3} < \sqrt{4}$

 $3 + \sqrt{1} < 3 + \sqrt{3} < 3 + \sqrt{4}$ $\therefore \ 4 < 3 + \sqrt{3} < 5$

② $2\sqrt{3} - 1 = \sqrt{12} - 1$

 $\sqrt{9} < \sqrt{12} < \sqrt{16}$ $\sqrt{9} - 1 < \sqrt{12} - 1 < \sqrt{16} - 1$

 $\therefore 2 < \sqrt{12} - 1 < 3$

 $1 + \sqrt{1} < 1 + \sqrt{2} < 1 + \sqrt{4}$

 $\therefore 2 < 1 + \sqrt{2} < 3$

① $\sqrt{3} - 2 = \sqrt{3} - \sqrt{4} < 0$ 음수이므로 제일 왼쪽에 있다.

 \bigcirc $-\sqrt{4} < -\sqrt{3} < -\sqrt{1}$ $6 - \sqrt{4} < 6 - \sqrt{3} < 6 - \sqrt{1}$

 $\therefore 4 < 6 - \sqrt{3} < 5$

①과 ⑤를 비교해 보면 $3 + \sqrt{3} - (6 - \sqrt{3}) = 2\sqrt{3} - 3 = \sqrt{12} - \sqrt{9} > 0$

 $\therefore 3 + \sqrt{3} > 6 - \sqrt{3}$

- **19.** $\sqrt{24a}$ 의 값이 자연수가 되는 두 자리 자연수 a 는 모두 몇 개인지 구하여라.
 - ► 답:
 개

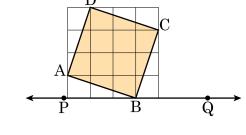
 ► 정답:
 3개

 $\sqrt{24a}$ 가 자연수가 되기 위해서 24a 는 완전제곱수가 되어야 한다.

 $24 = 2^3 \times 3$ 이므로 가장 작은 자연수 a 의 값은 6 이다.

따라서 두자리 수는 6×2^2 , 6×3^2 , 6×4^2 뿐이다. \therefore 3 개다.

 ${f 20}$. 다음 그림과 같은 수직선 위의 정사각형 ${
m ABCD}$ 에서 ${
m \overline{AB}}={
m \overline{PB}}, {
m \overline{CB}}=$ $\overline{\mathrm{QB}}$ 일 때, $\overline{\mathrm{PQ}}$ 의 길이를 구하여라. (단, 모눈 한 칸의 길이는 1 이다.)



답: ightharpoonup 정답: $2\sqrt{10}$

 $\overline{
m BC}$ 를 대각선으로 하는 직사각형에서 $\overline{
m BC}$ 를 빗변으로 하는 색칠하지 않은 부분의 삼각형의 넓이는 가로 1 , 세로 3인 직사각형 넓이의 $\frac{1}{2}$ 이므로 $1 \times 3 \times \frac{1}{2} = \frac{3}{2}$ 이다. 따라서 $\square ABCD = 4 \times 4 - \frac{3}{2} \times 4 = 10$ 이다.

 $\Box ABCD$ 는 정사각형이므로 $\overline{BC}^2=10$, $\therefore \overline{BC}=\sqrt{10}$ $\overline{AB}=\overline{BC}=\sqrt{10}$ 이므로 $\overline{PQ}=2\sqrt{10}$ 이다.