1. 다음 중 유리수는 모두 몇 개인지 구하여라.

 $\sqrt{12}$, -3, $\frac{1}{2}$, $\sqrt{4}$, $0.\dot{1}\dot{3}$, $6.2345235\cdots$

 답:
 개

 ▷ 정답:
 4개

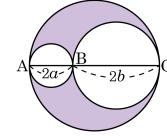
_

 $-3 \ , \frac{1}{2} \ , \sqrt{4} = 2 \ , 0.\dot{1}\dot{3} = \frac{13}{99}$

2. 다음 보기 중 옳은 것을 <u>모두</u> 고른 것은?

해설

 $4\sqrt{3} - 1 > 3 + \sqrt{75}$ $4 - \sqrt{12} < 1 + \sqrt{3}$ $-2 + 3\sqrt{3} < 2 + \sqrt{12}$ $-3\sqrt{7} + \sqrt{2} > -\sqrt{7} - \sqrt{2}$


 $\textcircled{1} \ \textcircled{2} \ \textcircled{3} \ \textcircled{0}, \ \textcircled{0} \ \ \textcircled{4} \ \textcircled{0}, \ \textcircled{e} \ \ \textcircled{3} \ \textcircled{e}, \ \textcircled{e}$

3.
$$12\left(\frac{1}{3}x + \frac{1}{4}y\right)\left(\frac{1}{3}x - \frac{1}{4}y\right)$$
 를 전개하면?

①
$$\frac{4}{3}x^2 - 12xy + \frac{3}{4}y^2$$

② $\frac{4}{3}x^2 - 6xy - \frac{3}{4}y^2$
③ $\frac{4}{3}x^2 + 12xy + \frac{3}{4}y^2$
⑤ $\frac{3}{4}x^2 + \frac{4}{3}y^2$

$$12\left\{ \left(\frac{1}{3}x\right)^2 - \left(\frac{1}{4}y\right)^2 \right\} = 12\left(\frac{1}{9}x^2 - \frac{1}{16}y^2\right)$$
$$= \frac{4}{3}x^2 - \frac{3}{4}y^2$$

4. 다음 그림에서 \overline{AC} 는 큰 원의 지름이고 나머지 원의 지름은 각각 $\overline{\mathrm{AB}} = 2a$, $\overline{\mathrm{BC}} = 2b$ 일 때, 색칠한 부분의 넓이 $S \stackrel{d}{=} a, \ b$ 에 관한 식으로 나타내면?

- ① $S = \pi ab$
- $\bigcirc S = 2\pi ab$ $\Im S = 16\pi ab$

 $\Im S = 4\pi ab$

(색칠한 부분의 넓이) = (큰 원의 넓이) - (작은 두 원의 넓이)

 $=\pi\left(\frac{2a+2b}{2}\right)^2-(\pi a^2+\pi b^2)$

$$= \pi \left(\frac{1}{2}\right) - (\pi a^{2} + \pi b^{2})$$

$$= \pi (a+b)^{2} - \pi (a^{2} + b^{2})$$

$$= \pi (a^{2} + 2ab + b^{2} - a^{2} - b^{2})$$

- $=2\pi ab$

- 5.1×4.9 를 간편하게 계산하기 위하여 이용되는 곱셈 공식으로 적절한 **5.** 것은?
 - ① $(a-b)^2 = a^2 2ab + b^2$ $(a+b)(a-b) = a^2 - b^2$

 - ③ $(x+a)(x+b) = x^2 + (a+b)x + ab$ $\textcircled{4} (ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$
 - $(a+b)^2 = a^2 + 2ab + b^2$

 $5.1 \times 4.9 = (5 + 0.1)(5 - 0.1) = 25 - 0.01$

해설

따라서 $(a+b)(a-b) = a^2 - b^2$ 을 사용한다.

- **6.** 두 다항식 $x^2 ax 15$, $2x^2 9x + b$ 의 공통인 인수가 x 3 일 때, a+b 의 값을 구하여라.
 - ▶ 답:

▷ 정답: a+b=7

해설

 $x^2 - ax - 15 = (x - 3)(x + 5)$ $-a = -3 + 5, \ a = -2$ $2x^2 - 9x + b = (x - 3)(2x + q)$

 $q - 6 = -9, \ q = -3$

 $b = -3 \times (-3), \ b = 9$ $\therefore a+b=7$

7. (a-b+3)(a+b-3)을 간단히 하면?

①
$$a^2 - b^2 - 9$$

②
$$a^2 + b^2 - 9$$

$$b-3=A$$
 로 치환하면

(준식) =
$$(a-A)(a+A)$$

= $a^2 - A^2$

$$= a^{2} - (b^{2} - 6b + 9)$$
$$= a^{2} - b^{2} + 6b - 9$$

8. ab + 5a - 3b - 23 = 0 을 만족하는 정수 a ,b 의 값을 구하여라. (단, a > 0 ,b > 0)

▶ 답:

▶ 답:

> 정답: *a* = 4

> 정답: b = 3

ab + 5a - 3b - 23 = 0

해설

a(b+5) - 3(b+5) + 15 - 23 = 0(a-3)(b+5) - 8 = 0

(a-3)(b+5) = 8a > 0, b > 0 이므로 b+5 > 5

a-3 = 1, b+5 = 8 $\therefore a = 4, b = 3$

- 9. (x-1)(x-3)(x-5)(x-7) + k 가 완전제곱식이 되도록 상수 k 의 값은?
 - ① 2
- ② 4 ③ 6 ④ 11
- **⑤**16

해설 (x-1)(x-7)(x-3)(x-5) + k

 $= (x^2 - 8x + 7)(x^2 - 8x + 15) + k$ $x^2 - 8x = A$ 로 놓으면,

(A+7)(A+15) + k $= A^2 + 22A + 105 + k = (A+11)^2$

 $\therefore 105 + k = 11^2 = 121$

 $\therefore \ k = 16$

10. 4xy-2x-2y+1 을 인수분해하면 (ax+b)(cy+d) 일 때, a+b+c+d의 값을 구하면?

②2 33 44 56 해설

4xy - 2x - 2y + 1 = 2x(2y - 1) - (2y - 1)= (2x - 1)(2y - 1) $\therefore a + b + c + d = 2 - 1 + 2 - 1 = 2$

① 0

- **11.** 두 수 a, b 가 a+b<0, ab<0, |a|<|b|를 만족할 때, $\sqrt{9a^2}+\sqrt{(-b)^2}+\sqrt{(-2a)^2}-\sqrt{4b^2}$ 을 간단히 하면? (단, |a|는 a의 절댓 값)
 - ① 3a+b
- - 3 -5a + b

4)5a+b

해설

(준식) = |3a| + |-b| + |-2a| - |2b|= 3a - b + 2a + 2b

a > 0, b < 0이므로

=5a+b

- 12. 실수 a, b 에 대하여 a < 0, ab < 0 일 때, $\sqrt{(2a-b)^2} + \sqrt{a^2} \sqrt{(b-a)^2}$ 을 간단히 하면?
- ② -2a-2b
- $\bigcirc 3 -2a + 2b$
- (4) –
- \bigcirc 4a-2b

 $\sqrt{(2a-b)^2} + \sqrt{a^2} - \sqrt{(b-a)^2}$ =| 2a - b | + | a | - | b - a |
= -2a + b - a - b + a = -2a

해설 a < 0, b > 0 이므로 2a - b < 0, b - a > 0 **13.** 두 자연수 a, b 에 대하여 $\sqrt{270a} = b$ 일 때, a + b 의 최솟값을 구하여라.

답:

▷ 정답: 120

해설

 $\sqrt{270a} = \sqrt{3^3 \times 2 \times 5 \times a}$ 근호 안의 소인수의 지수가 모두 짝수가 되어야 하므로 a=

 $3 \times 2 \times 5 = 30$ 이다. a 를 대입하면 $\sqrt{270a} = \sqrt{3^3 \times 2 \times 5 \times a} = \sqrt{3^4 \times 2^2 \times 5^2} = 3^2 \times 2 \times 5 = b$ 이다.

따라서 *b* = 90 이다.

14. 자연수 x 에 대하여 \sqrt{x} 보다 작거나 같은 자연수의 개수를 N(x) 로 나타내면 $N(1) + N(2) + N(3) + \cdots + N(x) = 42$ 가 성립되는 x 의 값을 구하여라.

> 정답: *x* = 17

▶ 답:

 $N(1) + \cdots + N(3) = 1 \times 3 = 3$

 $N(4) + \dots + N(8) = 2 \times 5 = 10$ $N(9) + \dots + N(15) = 3 \times 7 = 21$

 $N(9) + \cdots + N(13) = 3 \times 7 = 1$ $N(16) + N(17) = 4 \times 2 = 8$

x = 17일 때, 성립

15. $2(3+1)(3^2+1)(3^4+1)(3^8+1) = 3^a+b$ 일 때, 상수 a, b의 합 a+b의 값은?

15

② 16 ③ -15 ④ -16 ⑤ 9

2 = 3 - 1 이므로

해설

 $(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)$ $= (3^2 - 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)$

 $= (3^4 - 1)(3^4 + 1)(3^8 + 1)$ $= (3^8 - 1)(3^8 + 1)$

 $=3^{16}-1$

a = 16, b = -1

 $\therefore a+b=15$

 $16. \quad b-a=\sqrt{3} \ , \ ab=1$ 이코, $(b+a)b^2-(a+b)a^2=m\sqrt{3}$ 이라 할 때, m 의 값을 구하여라.

▶ 답:

▷ 정답: m = 7

 $(b+a)^2 = (b-a)^2 + 4ab$ = $(\sqrt{3})^2 + 4 = 7$

해설

 $(b+a)b^{2} - (a+b)a^{2} = (b+a)(b^{2} - a^{2})$ $= (b+a)^{2}(b-a)$ $= 7\sqrt{3} = m\sqrt{3}$

따라서 m=7 이다.

17. $x = \sqrt{3 - \sqrt{3 - \sqrt{3 - \cdots}}}$ 일 때, $x^2 + x + 1$ 의 값을 구하여라.

▶ 답:

▷ 정답: 4

$$x = \sqrt{3 - \sqrt{3 - \sqrt{3 - \cdots}}}$$
에서
$$\sqrt{3 - \sqrt{3 - \sqrt{3 - \cdots}}} = \sqrt{3 - x} = x$$
이므로
$$3 - x = x^2, x^2 + x = 3$$

$$\therefore x^2 + x + 1 = 4$$

 \sqrt{x} 미만의 자연수의 개수를 f(x)라 할 때, f(220) - f(144)의 값을 구하여라.

▶ 답: ▷ 정답: 3

18. 자연수 x에 대하여

해설

 $\sqrt{196}(=14) < \sqrt{220} < \sqrt{225}(=15)$ 이므로 $f(220)=(\sqrt{220}$ 미만의 자연수의 개수) = 14 $\sqrt{144} = \sqrt{(12)^2} = 12$ 이므로 $f(144) = (\sqrt{144} \text{ 미만의 자연수의 개수}) = 11$ $\therefore f(220) - f(144) = 14 - 11 = 3$

19. $\sqrt{1.43}$ 의 값을 a라 하고, $\sqrt{b} = 1.105$ 일 때, a, b 의 값은?

수	0	1	2	3	•••
1.0	1.000	1.005	1.010	1.015	• • •
1.1	1.049	1.054	1.058	1.063	
1.2	1.095	1.100	1,105	1,109	
1.3	1.140	1,145	1.149	1,153	• • • •
1.4	1.183	1.187	1.192	1.196	

③ a = 1.049, b = 1.42

① a = 1.000, b = 1.13

 $\bigcirc a = 1.196, \ b = 1.22$

② a = 1.005, b = 1.15

 \bigcirc a = 1.192, b = 1.23

표에서 1.43 을 찾으면 1.196 이므로 √1.43 = 1.196 이고, 제 곱근의 값이 1.105인 것을 찾으면 1.22 이므로 √1.22 = 1.105

이다. 따라서 a=1.196, b=1.22이다.

20. x에 관한 이차식 $x^2 + 11x + k$ 가 (x + a)(x + b)로 인수 분해될 때, 자연수 k의 값을 모두 구하여라.

답:

▶ 답:

답:

답:

▶ 답:

▷ 정답: 10▷ 정답: 18

▷ 정답: 24

➢ 정답: 28

▷ 정답: 30

해설

a + b = 11, k = ab $a = 1, b = 10 \implies k = 10$

 $\begin{vmatrix} a=2, b=9 \Rightarrow k=18 \\ a=3, b=8 \Rightarrow k=24 \end{vmatrix}$

 $a = 4, b = 7 \implies k = 28$

 $a = 5, b = 6 \implies k = 30$