1. 평행사변형 ABCD 에서 ∠BCO = 70°, ∠EDO = 30° 일 때, ∠DOC 의 크기는?

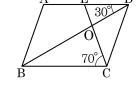
① 80° ② 85° ③ 90°

4 95° (5)100°

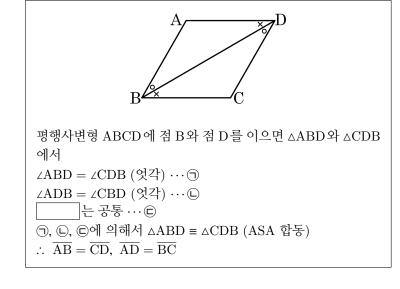
해설

 $\angle BCO = \angle DEO$ (엇각)

△DEO 에서 ∠DOC 는 한 외각이므로 ∠DOC = ∠DEO + ∠EDO = 70° + 30° = 100°



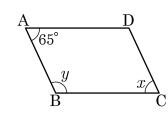
2. 다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 말로 알맞은 것은?



해설

 $\bigcirc \overline{3} \overline{BD}$ $\bigcirc \overline{DC}$ $\bigcirc \overline{DA}$

△ABD와 △CDB에서 ∠ABD = ∠CDB (엇각), ∠ADB = ∠CBD (엇각), BD는 공통이 므로 △ABD ≡ △CDB (ASA 합동)이다. **3.** 다음 □ABCD가 평행사변형이 된다고 할 때, x, y의 크기를 구하여라.



> 정답: ∠y = 115°

답:

 $\angle x = 65^{\circ}, \ \angle y = 180^{\circ} - 65^{\circ} = 115^{\circ}$

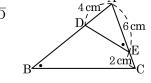
- 4. 다음 중 평행사변형이 되지 않는 것은?
 - ① 두 쌍의 대변이 각각 평행한 사각형 ② 두 쌍의 대각이 각각 같은 사각형

 - ③ 두 대각선의 길이가 같은 사각형
 - ④ 두 대각선이 서로 다른 것을 이등분하는 사각형 ⑤ 한 쌍의 대변이 평행하고 길이가 같은 사각형

③ 은 등변사다리꼴도 해당될 수 있으므로 평행사변형이라고 할

수 없다.

- 다음 그림에서 $\angle AED = \angle ABC$, $\overline{AD} =$ **5.** $4 \mathrm{cm}, \ \overline{\mathrm{AE}} = 6 \mathrm{cm}, \ \overline{\mathrm{EC}} = 2 \mathrm{cm}$ 일 때, $\overline{\mathrm{BD}}$ 의 길이를 구하면?
 - \bigcirc 7cm
- 3 8cm

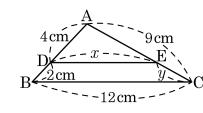


해설

 $\triangle ABC$ \hookrightarrow $\triangle AED$ 의 닮음비가 2:1 이므로 $2:1=\overline{AB}:6$ $\overline{AB}=12(cm)$

x = 12 - 4 = 8(cm)

6. 다음 그림에서 $\overline{BC} / / \overline{DE}$ 일 때, x + y 를 구하면?



① 9 ② 10 ③ 10.5 ④ 11.5

 $4:6=x:12 \circ | 므로 x=8$ $\overline{AB}: \overline{DB} = \overline{AC}: \overline{EC} \circ | \underline{L} = 6:2=9:y$ y=3 $\therefore x+y=11$

다음 그림의 평행사변형 ABCD 에서 \overline{AD} + 7. $\overline{\mathrm{DC}}$ 의 값을 구하여라.

▷ 정답: 18 cm

▶ 답:

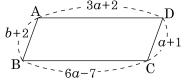
 $\Delta \mathrm{BQP}$ 가 $\overline{\mathrm{BQ}} = \overline{\mathrm{BP}}$ 인 이등변삼각형이므로

해설

 $\overline{\mathrm{DC}} = \overline{\mathrm{AB}} = 11 - 4 = 7 (\,\mathrm{cm})$ ΔAQD 가 $\overline{AQ}=\overline{AD}$ 인 이등변삼각형이므로 $\overline{\mathrm{AD}} = \overline{\mathrm{AQ}} = 11 (\,\mathrm{cm})$ $\overline{\mathrm{AD}} + \overline{\mathrm{DC}} = 11 + 7 = 18 (\,\mathrm{cm})$

 $\underline{\mathrm{cm}}$

8. 다음과 같은 사각형 ABCD가 평 행사변형이 되도록 하는 *a*, *b*의 합 *a* + *b*의 값을 구하여라.



 답:

 ▷ 정답:
 5

해설 평행사변형이 되려면

 $\overline{\mathrm{AD}} = \overline{\mathrm{BC}}$ 이어야 하므로 3a + 2 = 6a - 7

3a + 2 = 6a - t3a = 9

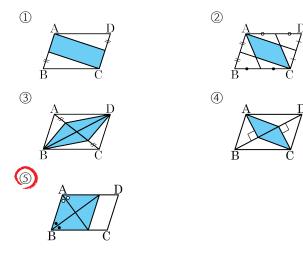
 $\therefore a = 3$

또한, $\overline{AB} = \overline{DC}$ 이어야 하므로 b+2=a+1

b+2=4

 $\therefore b = 2$ $\therefore a + b = 5$

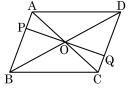
9. 다음 □ABCD 가 평행사변형일 때, 색칠한 사각형 중 종류가 <u>다른</u> 것은?



①,②,③,④ : 평행사변형 ⑤ 마름모

해설

10. 다음 그림과 같이 넓이가 80cm² 인 평행사변형 ABCD 에서 두 대각선의 교점 Ο 를 지나는 직선과 AB, DC 와의 교점을 각각 P, Q라 할 때, ΔΑΟΡ와 ΔDOQ의 넓이의 합을 구하여라.



 > 정답:
 20 cm²

 $\overline{AO} = \overline{CO}$, $\angle AOP = \angle COQ$ (맞꼭지각)

▶ 답:

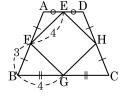
∠OAP = ∠OCQ(엇각)이므로 △OAP ≡ △OQC (ASA 합동)

따라서 색칠한 부분의 넓이는 ΔOCD 의 넓이와 같다.

 $\therefore 80 \times \frac{1}{4} = (20 \text{cm}^2)$ 이다.

 $\underline{\rm cm^2}$

11. 다음은 등변사다리꼴 ABCD 의 각 변의 중점을 E, F, G, H 라 할 때, □EFGH 의 둘레의 길이를 구하여라.



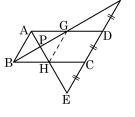
답:

➢ 정답: 16

등변사다리꼴의 각 변의 중점을 차례로 연결하면 마름모가 된다.

따라서 □EFGH 의 둘레는 4 × 4 = 16 이다.

12. 다음 그림의 □ABCD 는 평행사변형이고 AD = 2AB, FD = DC = CE 이다. AE 와 BF의 교점을 P 라 할 때, ∠APB 의 크기를 구하여라.



➢ 정답: 90°

▶ 답:

 $\angle BAP = \angle AEF$ (엇각)이고, $\overline{AD} = \overline{DE}$ 이므로 $\angle AED = \angle EAG$ 이다.

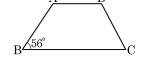
또, ∠ABP = ∠BFD (엇각)이고, $\overline{BC} = \overline{CF}$ 이므로 ∠FBC = ∠BFC 이다.

∠A + ∠B = 180°이므로 ∠ABP + ∠BAP = 90°이고, ∠APB = 90°이다.

- 90 ⁻ 이다.

BC = AB + AD 일 때, ∠D 의 크기를 구하 여라.

13. 다음 그림과 같은 사다리꼴 ABCD 에서



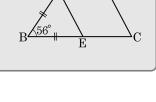
▷ 정답: 118°

▶ 답:

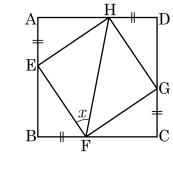
해설

 $\overline{AB} = \overline{BE}$ 인 점 $E = \overline{BC}$ 위에 잡으면 $\Box AECD$ 는 평행사변형이다.

 $\angle BEA = (180^{\circ} - 56^{\circ}) \div 2 = 62^{\circ}$ $\angle D = \angle AEC = 180^{\circ} - 62^{\circ} = 118^{\circ}$



14. 다음 그림과 같은 정사각형 ABCD에서 $\overline{\mathrm{EB}}=\overline{\mathrm{FC}}=\overline{\mathrm{GD}}=\overline{\mathrm{HA}}$ 가 되도록 각 변 위에 점 E, F, G, H를 잡을 때, $\angle x$ 의 크기는?



① 20° ② 25°

③ 30°

 $40\,^{\circ}$

 $\overline{AE} = \overline{BF} = \overline{CG} = \overline{DH}$ 이므로 $\overline{EH} = \overline{EF} = \overline{FG} = \overline{GH}$ 이다.

또한 \angle AEH = \angle EFB, \angle AHE = \angle BEF 이므로 \angle EFG = $90\,^{\circ}$ 이다. 따라서 \square EFGH는 정사각형이고, $\angle x = 45$ °이다.

15. 다음 그림은 일반적인 사각형에 조건이 하나씩 덧붙여져 특별한 사각 형이 되는 과정을 나타낸 것이다. ①~⑤에 덧붙여지는 조건을 바르게 나타낸 것은?



② 다른 한 쌍의 대변이 평행하다.

① 이웃하는 두 각의 크기가 같다.

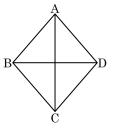
- ③ 이웃하는 두 각의 크기가 같다.
- ④ 이웃하는 두 변의 길이가 같다.
- ⑤ 다른 한 쌍의 대변이 평행하다.

① 한 쌍의 대변이 평행하다.

해설

- ② 이웃하는 두 변의 길이가 서로 같다.
- ④ 한 내각의 크기가 90°이다. ⑤ 이웃하는 변의 길이가 서로 같거나 대각선이 직교한다.

16. 다음 그림의 마름모 ABCD 의 각 변의 중점을 연결하여 만든 사각형의 성질이 <u>아닌</u> 것을 보 기에서 모두 골라라.



보기 ① 두 대각선의 길이가 서로 같다.

- © 두 대각선이 서로 수직으로 만난다.
- © 네 변의 길이가 모두 같다.
- ◎ 네 각의 크기가 모두 직각이다.
- ◎ 두 쌍의 대변이 각각 평행하다.
- **▶** 답:

▶ 답:

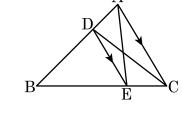
▷ 정답: □

▷ 정답: □

마름모의 중점을 연결하여 만든 사각형은 직사각형이 된다. 두 대각선이 서로 수직으로 만나는 것과 네 변의 길이가 모두

같은 것은 마름모의 성질이다.

17. 다음 그림과 같은 $\triangle ABC$ 에서 \overline{AC} $/\!/ \overline{DE}$ 이고, $\triangle ABC = 40 cm^2$, $\Delta {
m ABE} = 25 {
m cm}^2$ 이다. $\Delta {
m ADC}$ 의 넓이가 $x {
m cm}^2$ 일 때, x의 값을 구 하여라.



▶ 답:

▷ 정답: 15

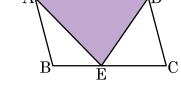
 $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{DE}}\,$ 이므로 밑변과 높이가 같으므로 $\Delta\mathrm{ADE}=\Delta\mathrm{DEC}$ 이

 $\Delta \mathrm{DBC} \,=\, \Delta \mathrm{DBE} + \Delta \mathrm{DEC} \,=\, \Delta \mathrm{DBE} + \Delta \mathrm{ADE} \,=\, \Delta \mathrm{ABE} \,=\,$

 $25(\mathrm{cm}^2)$ $\therefore \triangle ADC = \triangle ABC - \triangle DBC = 40 - 25 = 15 (cm^2)$

 $\therefore x = 15$

18. 다음 그림과 같은 평행사변형 ABCD에서 $\overline{\rm BE}:\overline{\rm CE}=3:4$ 이고 $\Delta {
m DCE}=60$ 일 때, $\Delta {
m AED}$ 의 넓이를 구하여라.

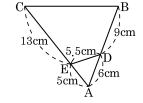


답: ▷ 정답: 105

 $\triangle ABE + \triangle DCE = \frac{1}{2} \Box ABCD$

 $\triangle ABE : \triangle DCE = 3 : 4$ 이므로 $\triangle ABE = 45$ $\therefore \triangle AED = \frac{1}{2} \Box ABCD = 105$

19. 다음 그림을 참고하여 \overline{BC} 의 길이를 구하여 라.



▷ 정답: 16.5 cm

▶ 답:

$\overline{AD} : \overline{AC} = 6 : 18 = 1 : 3$

해설

 $\overline{AE} : \overline{AB} = 5 : 15 = 1 : 3$

 $\overline{\mathrm{AD}}:\overline{\mathrm{AC}}=\overline{\mathrm{AE}}:\overline{\mathrm{AB}}$ 이고 $\angle\mathrm{A}$ 가 공통이므로 $\triangle\mathrm{ABC}$ \bigcirc $\triangle\mathrm{AED}$

(SAS 닮음) ∴ 1:3=5.5: BC

 $\underline{\mathrm{cm}}$

.. 1.3 = 5.5 . BC 따라서 $\overline{BC} = 16.5 \, \mathrm{cm}$ 이다.

20. 다음과 같이 닮음인 두 원뿔에서 작은 원뿔 의 밑면의 둘레의 길이는?

10cm/

① $9\pi \,\mathrm{cm}$

 $210\pi \,\mathrm{cm}$ $412\pi \,\mathrm{cm}$ $\Im 11\pi\,\mathrm{cm}$

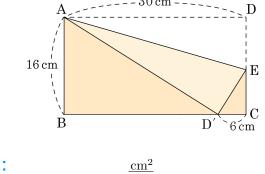
작은 원뿔의 반지름의 길이를 $r \, \mathrm{cm}$ 라고 하면

10:14=r:714r = 70

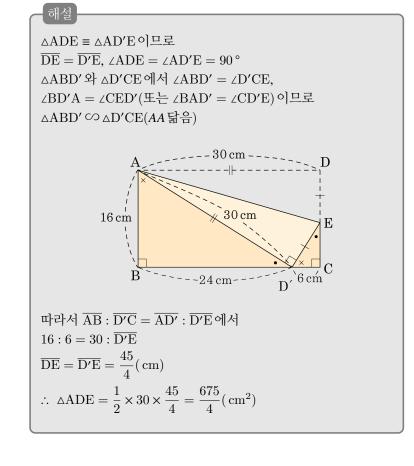
 $\therefore r = 5$

따라서 밑면의 둘레는 $2\pi \times 5 = 10\pi (\,\mathrm{cm})$ 이다.

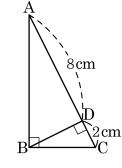
21. 다음 그림과 같이 $\overline{AB}=16~\mathrm{cm},~\overline{BC}=30~\mathrm{cm}$ 인 직사각형 ABCD에서 \overline{AB} 를 접는 선으로 하여 꼭짓점 D가 \overline{BC} 위의 점 D'에 오도록 접었을 때, $\triangle ADE$ 의 넓이를 구하여라.



ightharpoonup 정답: $rac{675}{4}
m cm^2$



 ${f 22}$. 다음 그림과 같이 ${\it \angle B}=90^{\circ}$ 인 ${\it \triangle ABC}$ 에서 $\overline{\it AC}{\it \bot}\overline{\it BD}$ 일 때, ${\it \triangle ABC}$ 의 넓이를 구하면?



4 23cm^2

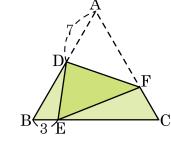
 \bigcirc 24cm²

① 20cm^2 ② 21cm^2 ③ 22cm^2

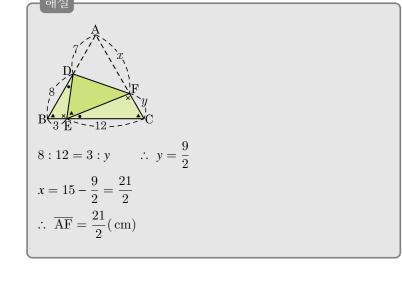
 $\triangle DBA \hookrightarrow \triangle DCB$ 이旦로 $\overline{BD}^2 = 8 \times 2$ $\overline{BD} = 4$

 $\therefore \triangle ABC = \frac{1}{2} \times (8+2) \times 4 = 20 (cm^2)$

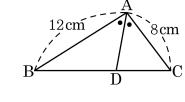
23. 한 변의 길이가 $15 \mathrm{cm}$ 인 정삼각형의 꼭짓점 A 가 $\overline{\mathrm{BC}}$ 위의 점 E 에 겹치게 접었다. $\overline{\mathrm{BE}}$ 가 $3 \mathrm{cm}$ 일 때, $\overline{\mathrm{AF}}$ 의 길이를 구하여라.



- ① $\frac{19}{2}$ cm ② $\frac{21}{2}$ cm ④ $\frac{25}{2}$ cm
- $3\frac{23}{2}$ cm



 ${f 24}$. 다음 그림에서 ${f AD}$ 는 $\angle {
m BAC}$ 의 이등분선이고, $\triangle {
m ABC}$ 의 넓이를 a라고 할 때, $\triangle ABD$ 의 넓이를 a 에 관하여 나타내면?



- ① $\frac{1}{5}a$ ② $\frac{5}{6}a$ ③ $\frac{5}{3}a$ ④ $\frac{2}{5}a$ ⑤ $\frac{3}{5}a$

 $\overline{\mathrm{AD}}$ 는 $\angle\mathrm{A}$ 의 이등분선이므로 $\overline{\mathrm{AB}}:\overline{\mathrm{AC}}=\overline{\mathrm{BD}}:\overline{\mathrm{DC}}=3:2$

해설

 $\triangle ABD$ 와 $\triangle ADC$ 에서 높이는 같고, 밑변이 3:2 이므로 $\triangle ABD:$ $\triangle ADC=3:2$ 이다. $\therefore \triangle ABD = \frac{3}{5} \triangle ABC = \frac{3}{5}a$

25. 다음 그림의 △ABC 에서 ∠DAB = ∠ACB , ∠DAE = ∠CAE 일 때, *x* 의 값을 구하면?

①6 cm ② 7 cm

③ 8 cm ④ 9 cm

⑤ 10 cm

해설

 $\angle B$ 는 공통, $\angle BAD = \angle BCA$.. $\triangle ABD$ \hookrightarrow $\triangle CBA$ (AA 닮음) 닮음비로 \overline{AB} : $\overline{BC} = \overline{AD}$: \overline{CA} 에서 12 : $24 = \overline{AD}$: 20 $\therefore \overline{AD} = 10$ (cm) $\triangle ADC$ 에서 \overline{AE} 는 $\angle CAD$ 의 이등분선이므로 10 : 20 = x : (18 - x)

(18 - x) $\therefore x = 6(\text{cm})$