1. $\frac{\sqrt{5}}{\sqrt{2}\sqrt{3}}$ 를 유리화할 때, 분모, 분자에 공통으로 곱해야 하는 수를 구하여라. ▶ 답:

> ব্ব답: √6

해설

 $\frac{\sqrt{5}}{\sqrt{2}\sqrt{3}} = \frac{\sqrt{5} \times \sqrt{2}\sqrt{3}}{\sqrt{2}\sqrt{3} \times \sqrt{2}\sqrt{3}} = \frac{\sqrt{30}}{6}$

다음 보기 중에서 옳지 <u>않은</u> 것을 골라라. 2.

▷ 정답: □

▶ 답:

 $\bigcirc \sqrt{12} - \sqrt{27} + \sqrt{48} = 2\sqrt{3} - 3\sqrt{3} + 4\sqrt{3} = 3\sqrt{3}$

3. $5\sqrt{2} \div 3\sqrt{5} \times 6\sqrt{10}$ 을 간단히 하여라.

▶ 답:

▷ 정답: 20

 $5\sqrt{2} \div 3\sqrt{5} \times 6\sqrt{10} = 5\sqrt{2} \times \frac{1}{3\sqrt{5}} \times 6\sqrt{10}$ $= 10\sqrt{2}\sqrt{2}$ $= 10 \times 2$ = 20

4. 다음 중 옳은 것을 모두 고르면?

- ① $(a-b)^2 = (a+b)^2$ $(a+b)^2 = (-b-a)^2$
- ② $(a-b)^2 = (-b-a)^2$
- \bigcirc $(b-a)^2 = (-a+b)^2$
- $(a+b)^2 = (-a+b)^2$

① $(a-b)^2 = a^2 - 2ab + b^2$

- $(a+b)^2 = a^2 + 2ab + b^2$
- $(a-b)^2 = a^2 2ab + b^2$ $(-b-a)^2 = a^2 + 2ab + b^2$
- $\Im (a+b)^2 = a^2 + 2ab + b^2$

 $(-b-a)^2 = b^2 + 2ab + a^2$

- $(-a+b)^2 = a^2 2ab + b^2$
- $(b-a)^2 = b^2 2ab + a^2$
- $(-a+b)^2 = a^2 2ab + b^2$

- **5.** (x+2y)(x-2y) 를 전개하면?
- ① x 4y ② $x^2 2y^2$ ③ $2x^2 4y^2$

 $x^2 - (2y)^2 = x^2 - 4y^2$

- 다음 중 $(a \pm b)^2$ 의 형태로 인수분해되는 것은? 6.
 - $3 4x^2 + 6x + 9$
 - ② $x^2 + 8xy 16y^2$
- $4 x^2 + 16$

$$a^{2} \pm 2 \times a \times b + b^{2} = (a \pm b)^{2}$$
① $x^{2} + x + \frac{1}{4} = \left(x + \frac{1}{2}\right)^{2}$

7. $-\sqrt{8^2} \div \left(\sqrt{\frac{8}{5}}\right)^2$ 을 계산하여라.

▶ 답:

▷ 정답: -5

$$(-8) \times \frac{5}{8} = -5$$

- 8. $\sqrt{18} \times \sqrt{a}$ 의 값을 0이 아닌 가장 작은 정수로 고칠 때, 정수 a 의 값을 구하여라.
 - ▶ 답:

➢ 정답: a = 2

해설

 $\sqrt{18} \times \sqrt{a} = \sqrt{3 \times 3 \times 2 \times a}$: a = 2

- 9. $\sqrt{30} < x < \sqrt{50}$ 을 만족하는 자연수 x 의 값을 모두 구하여라.
 - 답:
 - ▶ 답:

▷ 정답: x = 6

▷ 정답: *x* = 7

 $6 = \sqrt{36}$, $7 = \sqrt{49}$

- **10.** 다음 중 유리수가 아닌 수를 모두 고르면? (정답 2개)
 - ① $-\sqrt{0.16}$
- \bigcirc $\sqrt{0.3}$
- $\sqrt{2} 1$
- **4** 1.27
- ⑤ $-\sqrt{4}$

- √0.16 = -0.4 , - √4 = -2 이므로 유리수이다.

- 11. 다음 중 수직선 위의 모든 점과 일대일 대응하는 수는?
 - ④ 유리수⑤ 실수
- - ① 자연수 ② 정수 ③ 무리수

해설

연속성을 갖는 수는 실수뿐이며 수직선 위의 모든 점과 일대일 대응을 이루는 수는 실수이다.

- **12.** 세 수 $1 + \sqrt{2}$, $\sqrt{5} + \sqrt{2}$, $\sqrt{2} + \sqrt{3}$ 를 작은 순서대로 바르게 나타낸 것은?
 - ① $\sqrt{2} + \sqrt{3} < 1 + \sqrt{2} < \sqrt{5} + \sqrt{2}$ ② $\sqrt{2} + \sqrt{3} < \sqrt{5} + \sqrt{2} < 1 + \sqrt{2}$
 - $3 1 + \sqrt{2} < \sqrt{5} + \sqrt{2} < \sqrt{2} + \sqrt{3}$
 - $\boxed{4} 1 + \sqrt{2} < \sqrt{2} + \sqrt{3} < \sqrt{5} + \sqrt{2}$

$1 + \sqrt{2} - (\sqrt{2} + \sqrt{3}) = 1 - \sqrt{3} < 0$

해설

 $\therefore \sqrt{2} + \sqrt{3} < \sqrt{5} + \sqrt{2}$ 따라서 $1 + \sqrt{2} < \sqrt{2} + \sqrt{3} < \sqrt{5} + \sqrt{2}$ 이다.

딱딱^| 1 + **V**2 < **V**2 + **V**3

13.
$$\frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{2} + \frac{3\sqrt{2}}{2} + \frac{\sqrt{6}}{3}$$
 을 간단히 나타내면?

①
$$\frac{3\sqrt{2}}{\frac{2}{2}} + \frac{\sqrt{6}}{\frac{6}{6}}$$
 ② $\frac{5\sqrt{2}}{\frac{4}{4}} + \frac{5\sqrt{6}}{\frac{6}{6}}$ ③ $\frac{5\sqrt{2}}{4} - \frac{5\sqrt{6}}{6}$ ⑤ $\frac{7\sqrt{2}}{4} + \frac{\sqrt{6}}{6}$

해설
$$\frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{2} + \frac{3\sqrt{2}}{2} + \frac{\sqrt{6}}{3}$$

$$= \frac{\sqrt{2} + 6\sqrt{2}}{4} + \frac{-3\sqrt{6} + 2\sqrt{6}}{6}$$

$$= \frac{7\sqrt{2}}{4} - \frac{\sqrt{6}}{6}$$

14.
$$(1-y)(1+y)(1+y^2)(1+y^4)$$
을 간단히 하면?

① $1 + y^{32}$ ② $1 + y^2$ ③ $1 - y^2$

 $4 1 - y^4$ $51 - y^8$

해설

(1 - y²)(1 + y²)(1 + y⁴) = (1 - y⁴)(1 + y⁴)= 1 - y⁸

15. 다음 보기 중 옳은 것을 모두 고르면? 보기

 \bigcirc $(b-2a)^2 = (2a-b)^2$ $a^2 - b^2 = (a+b)(-a+b)$

 \bigcirc , \bigcirc

②⑦, ◎ $\textcircled{4} \ \textcircled{0}, \textcircled{e}, \textcircled{e} \qquad \qquad \textcircled{5} \ \textcircled{\neg}, \textcircled{e}, \textcircled{e}$

③ €, €

 \Box : $a^2 - b^2 = (a+b)(a-b)$

16. 두 다항식 $6x^2 - 5x + 1$ 과 $6x^2 + 7x - 3$ 의 공통인 인수는 ax - 1 이다. 이 때, a 를 구하여라.

▶ 답:

▷ 정답: a = 3

해설

 $6x^{2} - 5x + 1 = (2x - 1)(3x - 1)$ $6x^{2} + 7x - 3 = (3x - 1)(2x + 3)$

따라서 공통인 인수는 3x - 1이므로 a = 3이다.

17. a > 0 , b < 0 일 때, $\sqrt{a^2} + \sqrt{(-b)^2} - \sqrt{4a^2} - \sqrt{b^2}$ 을 간단히 하면?

 \bigcirc -a

① -a-b ② -a-2b ③ a \bigcirc -a+2b

a > 0이므로 2a > 0,

b < 0이므로 -b > 0, b < 0 $(\sqrt{a})^2 + \sqrt{(-b)^2} - \sqrt{(2a)^2} - \sqrt{b^2}$

= a + (-b) - (2a) - (-b)= a - b - 2a + b = -a

- **18.** $a = 6 \sqrt{5}$, $b = 1 + 2\sqrt{5}$ 일 때, 다음 중 옳은 것은?
 - ① a + b < 0
- ② a b > 0③ 2a + b > 15
- ① b-4 < 0
- $\bigcirc 2u + b > 16$

해설

- ① $a+b=6-\sqrt{5}+1+2\sqrt{5}=7+\sqrt{5}>0$ ② $a-b=6-\sqrt{5}-1-2\sqrt{5}=5-3\sqrt{5}<0$

19. $(2+1)(2^2+1)(2^4+1)(2^8+1) = 2^a+b$ 에서 a-b 의 값을 구하여라.

답:

➢ 정답: 17

```
- 해설
(2 1)
```

(2-1) 을 곱한다.2-1=1 이므로 식의 값에 변화없다.(2-1)(2+1)(2²+1)(2⁴+1)(28+1)

 $= (2^{2} - 1)(2^{2} + 1)(2^{4} + 1)(2^{8} + 1)$ $= (2^{4} - 1)(2^{4} + 1)(2^{8} + 1)$

 $= (2^4 - 1)(2^4 + 1)(2^8 + 1)$

 $= (2^8 - 1)(2^8 + 1) = 2^{16} - 1$

a = 16, b = -1a - b = 16 - (-1) = 17

20. 두 다항식 $x^2 - ax - 15$, $2x^2 - 9x + b$ 의 공통인 인수가 x - 3 일 때, a+b 의 값을 구하여라.

▶ 답:

해설

정답: a + b = 7

 $x^2 - ax - 15 = (x - 3)(x + 5)$

 $-a = -3 + 5, \ a = -2$ $2x^2 - 9x + b = (x - 3)(2x + q)$ $q - 6 = -9, \ q = -3$

 $b = -3 \times (-3), \ b = 9$ $\therefore a+b=7$

21. 다음 식에서 상수 A, B 의 값을 구하여라. $(x+A)(3x-3) = 3x^2 + 3x - B$

▶ 답:

▶ 답:

▷ 정답: A = 2

▷ 정답: B = 6

해설

(준식) = $3x^2 - 3x + 3Ax - 3A$ = $3x^2 + 3x - B$ -3 + 3A = 3

 $\therefore A = 2$

 $-3A = -3 \times 2 = -6 = -B$

 $\therefore B = 6$

22. $x^2 - 4x - A = (x+5)(x-B)$ 에서 A + B의 값은?

① 6 ② 9 ③ 20 49 **⑤**54

 $x^2 - 4x - A = x^2 - Bx + 5x - 5B,$ 5 - B = -4 이므로 B = 9 5B = A 이므로 45 = A따라서, A + B = 45 + 9 = 54

23. $\sqrt{5}$ 의 소수 부분을 a 라 할 때, $a^2 + 4a + 4$ 의 값을 구하여라.

▶ 답:

▷ 정답: 5

해설

 $2 < \sqrt{5} < 3$ 이므로 $a = \sqrt{5} - 2$

$$\therefore a^2 + 4a + 4 = (a+2)^2 = (\sqrt{5} - 2 + 2)^2$$
$$= (\sqrt{5})^2 = 5$$

24. $x + \frac{2}{x} = 3\sqrt{2}$ 일 때, $3x^2 + \frac{12}{x^2}$ 의 값을 구하여라.

답:

▷ 정답: 42

$$x^{2} + \frac{4}{x^{2}} = \left(x + \frac{2}{x}\right)^{2} - 4$$

$$= \left(3\sqrt{2}\right)^{2} - 4$$

$$= 18 - 4$$

$$= 14$$

$$\therefore 3x^{2} + \frac{12}{x^{2}} = 3\left(x^{2} + \frac{12}{x^{2}}\right)$$

$$= 3 \times 14$$

$$= 42$$

25. $\sqrt{x^2 + 35} = y$ 이고, x, y 는 자연수일 때, y 의 값을 모두 구하면?

① 6 ② 9 ③ 14 ④ 18 ⑤ 20

 $\sqrt{x^2 + 35} = y$ $x^2 = 1$ 일 때 y = 6 $x^2 = 289$ 일 때 y = 18

26. 다음 중 그 결과가 반드시 무리수인 것은?

- ① (무리수)+ (무리수)
- ② (무리수)- (무리수)
- ③ (유리수)x (무리수) ⑤ (무리수)- (유리수)
- ④ (무리수)÷ (무리수)

① $\sqrt{2} + (-\sqrt{2}) = 0$ (유리수)

- ② $\sqrt{2} \sqrt{2} = 0$ (유리수) ③ $0 \times \sqrt{2} = 0$ (유리수)
- ④ $\sqrt{2} \div \sqrt{2} = 1$ (유리수)

- ${f 27}.$ 자연수 n 에 대하여 \sqrt{n} 의 소수 부분을 f(n) 이라 할 때, f(75)-f(48)의 값은?
- ① $\sqrt{2}$ ② $\sqrt{2}-1$ ③ $\sqrt{2}-3$
- (4) $\sqrt{3}-1$ (5) $\sqrt{3}-2$

 $\sqrt{75}$ = 8.··· 이므로 정수 부분은 8, 소수 부분은 $\sqrt{75}$ - 8 = $5\sqrt{3} - 8$ 이다. $\sqrt{48}=6.\cdots$ 이므로 정수 부분은 6, 소수 부분은 $\sqrt{48}-6=$

 $4\sqrt{3}-6$ 이다. $\therefore f(75) - f(48)$

- $=(5\sqrt{3}-8)-(4\sqrt{3}-6)=\sqrt{3}-2$ 이다.

- $oldsymbol{28}$. x 에 관한 이차식을 2x+5 로 나누면 몫이 3x+4 이고, 나머지는 1이다. 이때, 이차식은?
 - $3 6x^2 + 23x + 20$
 - ① $3x^2 + 12x + 1$ ② $3x^2 + 12x + 11$
- $\bigcirc 6x^2 + 23x + 21$

 $(나누어지는 수) = (나누는 수) \times (몫) + (나머지) 이므로$

(x 에 관한 이차식)= $(2x+5) \times (3x+4) + 1 = 6x^2 + 23x + 21$

- $29. (x-y+2)(x-y+3)-(x+2y-3)^2$ 을 전개하였을 때, 상수항을 제외한 나머지 모든 항의 계수의 총합을 구하면?
 - ① -3
- ② 6

- **4** 15 **5** 21

x-y=A, x+2y=B라 하면

해설

 $(x-y+2)(x-y+3) - (x+2y-3)^2$

 $= (A+2)(A+3) - (B-3)^2$

 $= A^{2} + 5A + 6 - B^{2} + 6B - 9$ $= (x - y)^{2} + 5(x - y) + 6 - (x + 2y)^{2} + 6(x + 2y) - 9$ $= x^{2} - 2xy + y^{2} + 5x - 5y + 6 - x^{2} - 4xy - 4y^{2} + 6x + 12y - 9$ $= -3y^{2} - 6xy + 11x + 7y - 3$

 \therefore 상수항을 제외한 나머지 항의 계수의 총합 : -3-6+11+7=9

30. 다음 자연수 중 $3^{16} - 1$ 을 나누어 떨어지게 하는 수가 아닌 것은?

① 2 ② 4 ③ 5 ④ 9 ⑤ 10

해설 $3^{16} - 1 = (3^8 - 1)(3^8 + 1)$ $= (3^4 - 1)(3^4 + 1)(3^8 + 1)$ $= (3^2 - 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)$ $= (3 - 1)(3 + 1)(3^2 + 1)(3^4 + 1)(3^8 + 1)$ $= 2 \times 4 \times 10 \times 82 \times 6562$