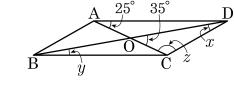
1. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle x$ - $\angle y$ + $\angle z$ 의 크기를 구하면?



② 115° ③ 125°

① 105°

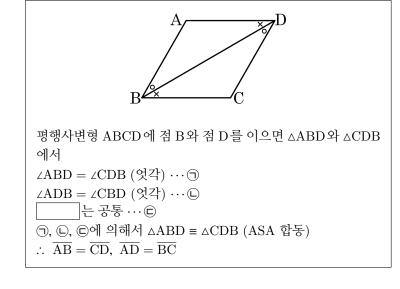
해설

4135°

⑤ 145°

∠COD = ∠OAD + ∠ADB, ∠ADB = 35° - 25° = 10°, ∠ADB = ∠DBC = 10° = y 이다. ∠x + ∠z = 180° - 35° = 145° 이다. 따라서 ∠x - ∠y + ∠z = 145° - 10° = 135° 이다.

2. 다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 말로 알맞은 것은?



해설

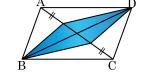
 $\bigcirc \overline{3} \overline{BD}$ $\bigcirc \overline{DC}$ $\bigcirc \overline{DA}$

△ABD와 △CDB에서 ∠ABD = ∠CDB (엇각), ∠ADB = ∠CBD (엇각), BD는 공통이 므로 △ABD ≡ △CDB (ASA 합동)이다.

- **3.** 다음 조건 중에서 사각형 ABCD 는 평행 사변형이 될 수 $\underline{\text{없는}}$ 것은?
 - $\overline{\text{(1)}}\overline{\text{AD}}//\overline{\text{BC}}, \overline{\text{AB}} = \overline{\text{DC}}$
 - ② $\angle A = \angle C, \angle B = \angle D$
 - ③ $\angle B + \angle C = 180^\circ$, $\angle A + \angle B = 180^\circ$ ④ $\overline{AO} = \overline{CO}$, $\overline{BO} = \overline{DO}$ (점 O는 대각선의 교점이다.
 - $\overline{AD}/\overline{BC}, \overline{AB}/\overline{DC}$

① 반례는 등변사다리꼴이 있다.

4. 다음 그림과 같이 평행사변형 ABCD 의 대 각선 \overline{AC} 위에 꼭짓점 A, C 로부터 거리가 같도록 두 점을 잡았다. 색칠한 사각형은 어떤 사각형인가?



사다리꼴
 마름모

② 평행사변형⑤ 정사각형

③ 직사각형

- 해설 드 저으

두 점을 각각 E, F 라고 하고 평행사변형 ABCD 의 두 대각선의 교점을 O 라고 하면 $\overline{BO} = \overline{DO}$, $\overline{AO} = \overline{OC}$ 이다. 그런데 $\overline{AE} = \overline{CF}$ 이므로 $\overline{EO} = \overline{FO}$ 이다. 따라서 두 대각선이 서로 다른 것을 이등분하므로 색칠한 부분의 사각형은 평행사변형이다.

- 점 P 는 평행사변형 ABCD 의 내부의 한 점이다. 평행사변형 ABCD 의 넓이가 60이고 ΔABP 의 넓이가 20일 때, ΔPCD 의 넓이는?
 - B
 - ① 10 ④ 40
- ② 20
- ⑤ 50

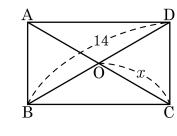
3 30

해설 $\Box ABCD = 2 \times (\triangle ABP + \triangle PCD)$

 $60 = 2 \times (20 + \triangle PCD)$

 $\therefore \triangle PCD = 10$

6. □ABCD 가 직사각형일 때, x 의 길이를 구하여라.



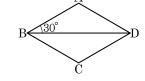
① 5 ② 6

직사각형은 두 대각선의 길이가 같고 이등분하기 때문에 x =

 $14 \div 2 = 7$ 이다.

7. 다음 그림의 □ABCD 는 마름모이다. ∠ABD = 30°일 때, ∠C 의 크기는?

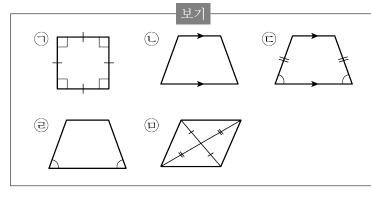
① 100° ② 120° ③ 140°



 \overline{AB} $/\!/\!| \overline{CD}$ 이므로 $\angle ABD = \angle CDB = 30^\circ$, $\overline{CB} = \overline{CD}$ 이므로

 $\angle CDB = \angle CBD = 30^{\circ}$ $\therefore \angle C = 180^{\circ} - 30^{\circ} \times 2 = 120^{\circ}$

8. 다음 중 등변사다리꼴인 것은?



⑤ ⑤, ⑥

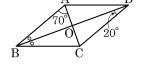
등변사다리꼴은 밑각의 크기가 같은 사다리꼴이다.

해설

© 사다리꼴이다. ◎ 사다리꼴이라는 조건이 나타나 있지 않다.

- ◎ 두 대각선의 길이가 같지 않으므로 등변사다리꼴이 아니다.

9. 다음 그림과 같은 평행사변형 ABCD 에서 ∠ABO = ∠CBO, ∠OAB = 70°, ∠ODC = 20° 일 때, ∠OCB 의 크기를 구하여라.



 답:

 ▷ 정답:
 70°

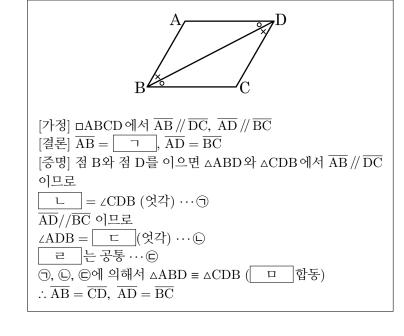
_

AB // CD 이므로 ∠CDB = ∠ABD = 20° 이고, △ABC 에서

해설

∠OCB = 180° - (70° + 40°) = 70° 이다.

10. 다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. ¬ ~ □에 들어갈 것으로 옳지 <u>않은</u> 것은?



 $\textcircled{4} = : \overline{BD}$

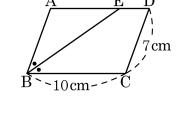
① ¬: \overline{CD} ② L: \(\alpha \) ABD ⑤ □: ASA

③ □ : ∠CDB

해설

③ $\overline{\mathrm{AD}} /\!/ \overline{\mathrm{BC}}$ 이므로 $\angle \mathrm{ADB} = \angle \mathrm{CBD}$ 이다.

11. 다음 그림의 평행사변형 ABCD 에서 \overline{BE} 는 $\angle ABC$ 의 이등분선이다. $\overline{BC}=10\,\mathrm{cm},\,\overline{CD}=7\,\mathrm{cm}$ 일 때, \overline{DE} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

▷ 정답: 3<u>cm</u>

⊘ 8**∃** : 5<u>cm</u>

∠EBC = ∠AEB (엇각)

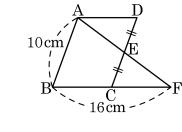
해설

답:

즉, $\triangle ABE$ 는 이등변삼각형이므로 $\overline{AB}=\overline{AE}=7(\,\mathrm{cm})$

 $\overline{\mathrm{DE}} = \overline{\mathrm{AD}} - \overline{\mathrm{AE}} = 10 - 7 = 3 (\mathrm{cm})$

 ${f 12}$. 오른쪽 그림과 같은 평행사변형 ABCD 에서 $\overline{
m CD}$ 의 중점을 ${f E}$, $\overline{
m AE}$ 의 연장선과 \overline{BC} 의 연장선의 교점을 F 라 할 때, \overline{AD} 의 길이를 구하여라.



 \bigcirc 4 cm

 $25 \, \mathrm{cm}$

 $36 \, \mathrm{cm}$

4 9 cm

(5)8 cm

△AED 와 △FEC 에서

해설

 $\overline{\mathrm{DE}} = \overline{\mathrm{CE}}$, $\angle \mathrm{ADE} = \angle \mathrm{FCE}$ (엇각),

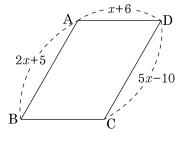
∠AED = ∠FEC (맞꼭지각)이므로

 $\triangle AED \equiv \triangle FEC(ASA합동)$

따라서 $\overline{\mathrm{AD}}=\overline{\mathrm{FC}}$ 이고, $\square\mathrm{ABCD}$ 가 평행사변형이므로 $\overline{\mathrm{AD}}=$ $\overline{\mathrm{BC}}$ 이다.

즉, $\overline{\mathrm{BF}}=\overline{\mathrm{BC}}+\overline{\mathrm{CF}}=\overline{\mathrm{AD}}+\overline{\mathrm{AD}}=2\overline{\mathrm{AD}}$ 이므로 $2\overline{\mathrm{AD}}=16$ $\therefore \overline{\mathrm{AD}} = 8(\mathrm{cm})$

13. 다음 그림의 평행사변형 ABCD에 서 \overline{BC} 의 길이를 구하여라.



▷ 정답: 11 cm

▶ 답:

평행사변형이므로 $\overline{
m AB}=\overline{
m CD}$

 $\stackrel{\mathbf{R}}{=}, 2x + 5 = 5x - 10$ x = 5

 $\overline{\mathrm{BC}} = \overline{\mathrm{AD}} = x + 6$ 이므로

 $\therefore \overline{BC} = 5 + 6 = 11(\text{cm})$

14. 다음 그림과 같은 평행사변형 ABCD 에서 두 대각선의 교점 O 를 지나는 직선이 $\overline{\mathrm{AB}}$, $\overline{\mathrm{CD}}$ 와 만나는 점을 각각 P , Q 라고 한다. 다음 보기에서 옳지 <u>않은</u> 것을 모두 골라라.



 \bigcirc $\angle PAO = \angle QCO$ $\textcircled{\textbf{H}} \ \angle \text{QDO} = \angle \text{ADO}$

답:

▶ 답:

▷ 정답 : □

▷ 정답: ⑭

평행사변형에서 두 대각선은 서로 다른 대각선을 이등분한다.

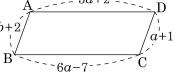
해설

 \triangle OPA , \triangle OQC 에서 $\overline{\mathrm{AO}} = \overline{\mathrm{CO}}$ 이코, $\angle \mathrm{BAO} = \angle \mathrm{OCD}$, $\angle \mathrm{AOP} = \angle \mathrm{COQ}$ 임으로, $\triangle \mathrm{OPA} \equiv \triangle \mathrm{OQC}$ (ASA 합동) 따라서 $\overline{PO} = \overline{QO}$ 이다.

②. 평행사변형에서 두 대각선은 서로 다른 대각선을 이등분하 므로 $\overline{OB} = \overline{OD}$ 이다. 그러나, 항상 $\overline{OB} \neq \overline{OC}$ 는 아니다.

 Θ . 평행사변형에서 $\angle B = \angle D$ 이지만, $\angle ADO = \angle QDO$ 인지는 알 수 없다.

15. 다음과 같은 사각형 ABCD가 평 행사변형이 되도록 하는 a, b의 합 a+b의 값을 구하여라. b+2



 답:

 ▷ 정답:
 5

해설

평행사변형이 되려면

 $\overline{\mathrm{AD}} = \overline{\mathrm{BC}}$ 이어야 하므로 3a + 2 = 6a - 7

3a + 2 = 6a - 73a = 9

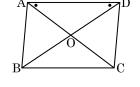
 $\therefore a = 3$

또한, $\overline{AB} = \overline{DC}$ 이어야 하므로 b+2=a+1

b+2=4 $\therefore b=2$

 $\therefore a+b=5$

16. 다음 그림과 같은 평행사변형 ABCD 에 다음 조건을 추가할 때, 직사각형이 되지 <u>않는</u> 것은?



- $\overline{\text{AO}} = \overline{\text{DO}}$
- ⑤ ∠DAO = ∠ADO

해설

① $\angle A = \angle B$

④ $\overline{\mathrm{AC}}$ $\bot\overline{\mathrm{BD}}$ 는 평행사변형이 마름모가 되는 조건

17. 다음 그림의 직사각형 ABCD 가 정사각형이 되기 위한 조건을 보기 에서 모두 찾아라.

B

 \bigcirc $\overline{AC} \bot \overline{BD}$

▶ 답:

▶ 답:

▷ 정답: ⑤

▷ 정답: ॥

직사각형이 정사각형이 될 조건

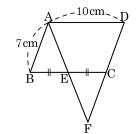
두 대각선이 이루는 각이 90° 이다. $\to \bigcirc \overline{AC}\bot\overline{BD}$ 이웃한 두변의 길이가 같다. $\to \boxdot \overline{AB} = \overline{BC}$

18. 다음 그림의 평행사변형 ABCD 에서 $\overline{BE}=\overline{CE}$ 이고 $\overline{AD}=10\,\mathrm{cm},\overline{AB}=7\,\mathrm{cm}$ 일 때, \overline{DF} 의 길이는?

① 7 cm (4) 16 cm

② 9 cm ③14 cm

cm ⑤ 18 cm



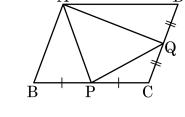
 $\overline{AB} = \overline{DC} = 7 \,\mathrm{cm}, \ \overline{BE} = \overline{CE} = 5 \,\mathrm{cm}$

해설

∠AEB = ∠FEC (맞꼭지각) ∠ABE = ∠FCE (엇각)

 $\triangle ABE \equiv \triangle FCE, \overline{AB} = \overline{FC} = 7 \text{ cm}$ ∴ $\overline{DF} = \overline{DC} + \overline{FC} = 14 \text{ (cm)}$

19. 평행사변형 ABCD 에서 $\overline{BC},\overline{CD}$ 의 중점을 각각 P,Q 라 하자. $\Box ABCD = 64 cm^2$ 일 때, $\triangle APQ$ 의 넓이는 얼마인가?



 $\underline{\mathrm{cm}^2}$

 ▶ 정답:
 24 cm²

▶ 답:

 $\triangle APQ = \Box ABCD - \triangle ABP - \triangle AQD - \triangle PCQ$ $= 64 - \frac{1}{4} \times 64 - \frac{1}{4} \times 64 - \frac{1}{8} \times 64$ = 64 - 16 - 16 - 8 $= 24 \text{ (cm}^2)$

 ${f 20}$. 다음 그림에서 ${f BD}$ 는 직사각형 ${f ABCD}$ 의 대각선이다. ∠ABD, ∠BDC의 이등분선이 $\overline{\mathrm{AD}},\ \overline{\mathrm{BC}}$ 와 만나는 점을 각각 E, F라 할 때, DE = 8cm 일 때, □EBFD 의 둘레는?

② 32cm \bigcirc 30cm 34cm

4 36cm \bigcirc 38cm

 $\overline{\mathrm{EB}}\,/\!/\,\overline{\mathrm{DF}}$ 이므로 $\angle\mathrm{EBD}$ = $\angle\mathrm{FDB}$ 이고 $\overline{\mathrm{AD}}\,/\!/\,\overline{\mathrm{BC}}$ 이므로 $\angle EDB = \angle DBF$ 이다.

는 마름모이다. $\overline{\mathrm{DE}} = 8\mathrm{cm}$ 이므로 둘레는 $4 \times 8 = 32(\mathrm{cm})$ 이다.

따라서 ΔEBD 는 이등변삼각형이고, $\overline{DE} = \overline{BE}$ 이므로 $\Box ABCD$