
다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC 에서 \overline{BC} 의 중점을 M 이라 하자. 점 M 에서 \overline{AB} , \overline{AC} 에 내린 수선의 발을 각각 D, E 라 할 때, $\overline{MD} = \overline{ME}$ 임을 나타내는 과정에서 필요한 조건이 <u>아닌</u> 것은?

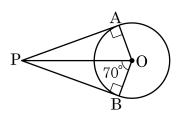
①
$$\overline{\mathrm{BM}} = \overline{\mathrm{CM}}$$

(2) /B = /C

$$\overline{\text{BD}} = \overline{\text{CE}}$$

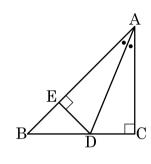
$$\textcircled{4} \angle BDM = \angle CEM$$

⑤ RHA 합동


해설

 ΔBMD 와 ΔCME 에서 $\angle B = \angle C$, $\angle BDM = \angle CEM = 90^{\circ}$,

 $\overline{\mathrm{BM}} = \overline{\mathrm{MC}}$


∴ △BMD ≡ △CME (RHA 합동)

2. 다음 그림에서 ∠APB 의 크기는?

① 20° ② 40° ③ 80° ④ 90° ⑤ 140°

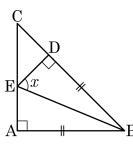
△PAO ≡ △PBO (RHA 합동)이므로 ∠POA = 70° ∴ ∠APB = 40° 3. $\overline{AC} = \overline{BC}$ 인 직각이등변삼각형에 꼭짓점 A 의 이등분선이 밑변 BC 와 만나는 점을 D , D 에서 빗변AB 에 수선을 그어 만나는 점을 E 라할 때, 다음 중 올바른 것을 모두 고르면?

 $\overline{\text{BD}} = \overline{\text{CD}}$

해설

- $\boxed{3}\overline{AC} + \overline{CD} = \overline{AB}$
- ⑤ 점 D 는 △ABC 의 내심

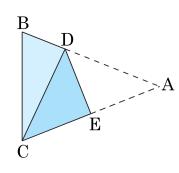
$$\bigcirc$$
 \triangle ADC \equiv \triangle ADE


$$4 \triangle ADE = 67.5^{\circ}$$

△AED ≡ △ACD(RHA합동)

 $\triangle EBD$ 는 이등변 삼각형이므로 $\overline{EB} = \overline{ED}$ 이고 $\triangle AED \equiv \triangle ACD(RHA합동)$ 이므로 $\overline{CD} = \overline{ED}$

따라서 $\overline{EB} = \overline{ED} = \overline{CD}$ 이다.


4. 다음 그림과 같이 $\angle A=90^\circ$, $\overline{AB}=\overline{AC}$ 인 직각이등변삼각형 ABC 가 있다. $\overline{AB}=\overline{DB}$ 인 점 D 를 지나며 \overline{AC} 와 만나는 점을 E 라고 할때, $\angle x$ 의 크기는?

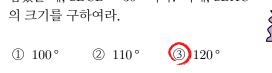
①
$$60^{\circ}$$
 ② 62.5° ③ 65° ④ 67.5° ⑤ 70°

$$\therefore \angle x = 135^{\circ} \times \frac{1}{2} = 67.5^{\circ}$$

5. 다음 그림은 ∠B = ∠C 인 삼각형 ABC 를 점 A 가 점 C 에 오도록 접은 것이다. ∠DCB = 25° 일 때, ∠A 의 크기를 구하여라.

$$ightharpoonup$$
 정답: $\frac{130}{3}$ $\stackrel{\circ}{-}$

$$\angle A = \angle x$$
 라 하면


$$\angle A = \angle x$$
 라 하면 $\angle DCE = \angle A = \angle x$

$$\angle B = \angle C = \angle x + 25^{\circ}$$

 $\triangle ABC$ 에서 세 내각의 크기의 합은 180° 이므로 $\angle x + 2(\angle x + 25^{\circ}) = 180^{\circ}$

$$3\angle x = 130^{\circ}, \ \angle x = \frac{130^{\circ}}{3}$$

$$\therefore \angle A = \frac{130^{\circ}}{2}$$

6. 직사각형 모양의 종이를 다음 그림과 같이 접었을 때, ∠BCD = 30°이다. 이때, ∠BAC 의 크기를 구하여라.

④ 130° ⑤ 140°