
다음 그림에서 \overline{AB} 를 한 변으로 하는 정사각형 ABCD 가 있다. $\overline{AC}=\overline{AQ}=\overline{BD}=\overline{BP}$ 일 때, \overline{PQ} 의 길이를 구하면? 1.

- ① 5 ④ $2\sqrt{2}$
- ② $1 + 2\sqrt{2}$
 - ⑤ $5 + 2\sqrt{2}$

 $3 - 1 + 2\sqrt{2}$

 $\overline{AC} = \overline{DB} = \sqrt{2}$

 $Q=2+\sqrt{2}, P=3-\sqrt{2}$ 이므로

두 점 P,Q사이의 거리는 $2+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}-1$

2.
$$\frac{6}{\sqrt{3}}(\sqrt{3}-\sqrt{2})+\frac{\sqrt{8}-2\sqrt{3}}{\sqrt{2}}$$
 을 간단히 나타내면?

① $4 - \sqrt{6}$ ② $4 - 3\sqrt{6}$ ③ $8 - \sqrt{6}$

 $6 - 2\sqrt{6} + 2 - \sqrt{6} = 8 - 3\sqrt{6}$

3. 다음 그림과 같이 한 변의 길이가 x인 정사각형 한 개와, 두 변의 길이가 각각 x, 1인 직사각형 5개, 한 변의 길이가 1인 정사각형 6개를 재배열하여 직사각형 한 개를 만들려한다. 이 직사각형의 가로의 길이를 a, 세로의 길이를 b라 할 때, $(a+b)^2$ 의 값은 되는가?

 $34x^2 + 20x + 25$

② $(2a+b)^2$ $(4a+b)^2$

⑤ 25

① $x^2 + 5x + 6$

해설

한 변이 x인 정사각형 한 개의 넓이 : x^2 세로, 가로가 각각 x, 1인 직사각형 5개의 넓이 : 5x

따라서 직사각형의 넓이는 $x^2 + 5x + 6 = (x+2)(x+3)$ 이다. 가로 길이를 x+3=a, 세로 길이를 x+2=b라 하면

한 변의 길이가 1인 정사각형 6개의 넓이: 6

 $(a+b)^2 = (x+3+x+2)^2$ $= (2x+5)^2$

 $= 4x^2 + 20x + 25$

- 이차함수 $f(x) = x^2 2x + 3$ 에 대하여 다음 중 옳지 <u>않은</u> 것은? 4.
- - ① f(0) = 3 ② f(-1) = 6 ③ f(1) = 2

- 5. 다음 이차함수의 그래프 중 모양이 위로 볼록하면서 폭이 가장 좁은 포물선은?
 - ① $y = -\frac{1}{2}x^2 1$ ② $y = -3x^2$ ③ $y = x^2 3$ ④ $y = 2(x 3)^2$

이차항의 계수가 음수이면서 절댓값이 큰 것을 찾는다.

- 6. 다음 중 $\sqrt{28x}$ 가 자연수가 되게 하는 x 의 값으로 옳지 않은 것은?
 - ① $\frac{1}{7}$ ② 7^2 ③ 28 ④ 63 ⑤ $\frac{4}{7}$

 $\sqrt{28x}=\sqrt{2^2\times7\times x}$ ② $\sqrt{2^2\times7^3}=2\times7\times\sqrt{7}=14\sqrt{7}$ 이 되어 자연수가 되지 못한

- ① $\frac{2}{5}$ ② $\sqrt{\frac{2}{5}}$ ③ $\frac{2}{\sqrt{5}}$ ④ $\frac{\sqrt{2}}{5}$ ⑤ $\frac{\sqrt{2}}{2}$

제곱해서 크기를 비교하면

$$\bigcirc \left(\sqrt{\frac{2}{5}}\right)^2 = \frac{2}{5} = \frac{10}{25}$$

$$\left(4\left(\frac{\sqrt{2}}{5}\right)^2 = \frac{2}{25}$$

다음 수들이 위치하는 구간과 바르게 연결된 것은? 8.

 $2 + \sqrt{3}$: G ② $5 - \sqrt{2}$: F ③ $2\sqrt{3} + 1$: E ④ $\sqrt{6} - 3$: A ⑤ $\frac{\sqrt{3} + 4}{2}$: B

해설

 $\sqrt{1} < \sqrt{3} < \sqrt{4}$ 에서 $3 < 2 + \sqrt{3} < 4$: 점 F $-\sqrt{4} < -\sqrt{2} < -\sqrt{1}$ 에서 $3 < 5 - \sqrt{2} < 4$: 점 F

 $\sqrt{9} < 2\sqrt{3} < \sqrt{16}$ 에서 $4 < 2\sqrt{3} + 1 < 5$: 점 G ④ $\sqrt{4} < \sqrt{6} < \sqrt{9}$ 에서 $-1 < \sqrt{6} - 3 < 0$: 점 B

 $5 < \sqrt{3} + 4 < 6$ 에서 $\frac{5}{2} < \frac{\sqrt{3} + 4}{2} < 3$: 점 E

9. $\sqrt{1.92}=a\sqrt{3},\ \sqrt{\frac{63}{64}}=b\sqrt{7}$ 일 때, 유리수 $a,\ b$ 에 대하여 ab의 값을 구하면?

① 0.3 ② 0.5 ③ 1 ④ 1.5 ⑤ 3

해설
$$\sqrt{1.92} = \sqrt{\frac{192}{100}} = \sqrt{\frac{8^2 \times 3}{10^2}} = \frac{8\sqrt{3}}{10} = \frac{4}{5}\sqrt{3}$$

$$\therefore a = \frac{4}{5}$$

$$\sqrt{\frac{63}{64}} = \sqrt{\frac{3^2 \times 7}{8^2}} = \frac{3\sqrt{7}}{8}$$

$$\therefore b = \frac{3}{8}$$

$$\therefore ab = \frac{4}{5} \times \frac{3}{8} = \frac{3}{10} = 0.3$$

10. 곱셈 공식을 이용하여 다음을 계산하면?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

 $511 \times 511 - 510 \times 512 - 2$

a = 511 로 놓으면 $511 \times 511 - 510 \times 512 - 2$ $= a \times a - (a - 1) \times (a + 1) - 2$ $= a^2 - (a^2 - 1) - 2$ $= a^2 - a^2 + 1 - 2 = -1$

해설

- **11.** 세로의 길이가 2a+4이고 넓이가 $6a^2+18a+12$ 인 직사각형의 둘레의 길이는?
 - ① 10a + 12 ② 10a + 14 ③ 12a + 12 ④ 12a + 14

해설

6a² + 18a + 12 = (2a + 4)(3a + 3) 이므로 둘레의 길이는 2 × (2a + 4 + 3a + 3) = 10a + 14이다. 12. 다음은 $a^2 + 3a = t$ 로 치환하여 인수분해하는 과정이다. 만족하는 상수 ⋽, ₾, ₾을 차례로 나열한 것은?

$$(a^{2} + 3a - 2)(a^{2} + 3a + 4) - 27$$

$$= (t - 2)(t + 4) - 27 = t^{2} + 2t - \bigcirc$$

$$= (t + \bigcirc)(t - \bigcirc)$$

$$= (a^{2} + 3a + \bigcirc)(a^{2} + 3a - \bigcirc)$$

④ 35, 7, −5

① 35, 5, 7

27,7,5③35,7,5

327,5,7

해설

 $a^2 + 3a = t$ 라 하면 (t-2)(t+4)-27 $= t^2 + 2t - 35$ = (t+7)(t-5) $= (a^2 + 3a + 7)(a^2 + 3a - 5)$ 따라서 ① = 35, ⓒ = 7, ⓒ = 5 이다. **13.** xy = 5 이고, $x^2y + xy^2 + 2(x + y) = 42$ 일 때, $x^2 + y^2$ 의 값은?

① 10 ② 15 ③ 20 ④ 26 ⑤

 $x^2y + xy^2 + 2(x + y) = xy(x + y) + 2(x + y)$ = (x + y)(xy + 2) = 42 에서 xy = 5 이므로 x + y = 6 이다. $\therefore x^2 + y^2 = (x + y)^2 - 2xy$ = $6^2 - 2 \times 5$ = 36 - 10 = 26

- **14.** 정수 x의 값의 범위가 $-2 \le x \le 2$ 일 때, 이차방정식 $x^2 2x 3 = 0$ 의 해를 구하면?
- ② x = 1

x의 값이 -2, -1, 0, 1, 2이므로 방정식에 대입하면 성립하는

것은 *x* = −1이다.

15. 이차방정식 $2x^2 + 4x - 7 = 0$ 의 한 근을 a , $4x^2 - 6x - 3 = 0$ 의 한 근을 b 라 할 때, $a^2 - 2b^2 + 2a + 3b$ 의 값은?

- ① 0 ② -1 ③ 1 ④ -2 ⑤ 2

a 가 $2x^2 + 4x - 7 = 0$ 의 근이므로 대입하면 $2a^2 + 4a - 7 = 0 \Leftrightarrow a^2 + 2a = \frac{7}{2}$

$$2a^2 + 4a - 7 = 0 \Leftrightarrow a^2 + 2a =$$

$$\therefore a^2 - 2b^2 + 2a + 3b = (a^2 + 2b^2)$$

$$\begin{vmatrix} 2a + 4a + 7 - 6 & 4a + 2a - 2 \\ b 가 4x^2 - 6x - 3 = 0 의 근이므로 대입하면 4b^2 - 6b - 3 = 0 \Leftrightarrow 2b^2 - 3b = \frac{3}{2}$$
$$\therefore a^2 - 2b^2 + 2a + 3b = (a^2 + 2a) - (2b^2 - 3b)$$
$$= \frac{7}{2} - \frac{3}{2} = 2$$

16. 두 이차방정식 $2x^2 - 2x - 12 = 0$, $3x^2 - 11x + 6 = 0$ 을 동시에 만족하는 *x* 의 값은?

- ① 0 ② 1 ③ 2 ④3 ⑤ 4

해설 $2x^2 - 2x - 12 = 0$

2(x-3)(x+2) = 0

 $\therefore x = 3 \pm x = -2$ $3x^2 - 11x + 6 = (3x - 2)(x - 3) = 0$ $\therefore x = \frac{2}{3} \stackrel{\square}{+} \stackrel{\square}{-} x = 3$

- 17. 두 이차방정식 $2x^2 + mx 8 = 0$, $x^2 5x n = 0$ 의 공통인 해가 x = -1일 때, m - n의 값을 구하면?
 - 12
- ② -11 ③ 0 ④ 11 ⑤ 12

 $2 \times (-1)^2 + m(-1) - 8 = 0$ m = 2 - 8 = -6

 $(-1)^2 - 5(-1) - n = 0$

 $\therefore n = 1 + 5 = 6$

m - n = (-6) - 6 = -12

18. $kx^2-4x+4=0$ 이 중근을 가질 때, 이차방정식 $(k-2)x^2-3x-(2k+1)=0$ 의 근의 합은?

① -3 ② -2 ③ $\frac{3}{2}$ ④ 0 ⑤ 1

 $\frac{D}{4} = 2^2 - 4k = 0$ k = 1 $-x^2 - 3x - 3 = 0$ 따라서 두 근의 합은 $-\left(\frac{-3}{-1}\right) = -3$ 이다.

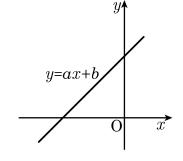
19. 다음 중 y 가 x 에 관한 이차함수인 것으로 짝지워진 것은?

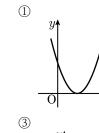
 $y = x(x-1) - x^2$

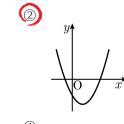
1 7, 6, 6

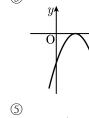
© 분속 xm 로 200m 달릴 때 걸린 시간 y 분 ⓒ 한 변의 길이가 각각 xcm, (5-x)cm 인 두 정사각형의 넓 이의 합은 ycm² ② 넓이가 ycm² 인 삼각형의 밑변의 길이xcm , 높이 4xcm \bigcirc 반지름의 길이가 xcm 이고 중심각의 크기가 30° 인 부채꼴의

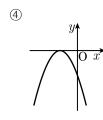
넓이 ycm^2

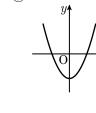

3 ∟, ∊, □

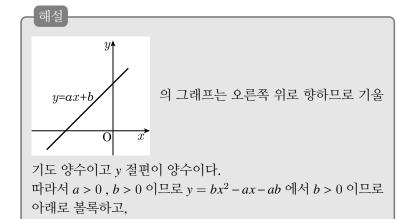

⑤©, @, @ ④ ⑦,⊜,◎


② □,□,⊜


식으로 나타내면 다음과 같다. ③ y = −x (일차함수) $\mathbb{O}($ 시간 $)=\frac{(거리)}{(속력)}$ \therefore $y=\frac{200}{x}$ (분수함수) ⑤ $y = x^2 + (5 - x)^2 = 2x^2 - 10x + 25$ (이 차합수) (의) $= \frac{1}{2} \times x \times 4x = 2x^2$ (이차함수) 回 $y = \pi \times x^2 \times \frac{30}{360} = \frac{\pi}{12} x^2 \ (이치합수)$


20. 다음 보기는 일차함수 y = ax + b 의 그래프이다. 다음 중 이차함수 $y = bx^2 - ax - ab$ 의 그래프는?





 $\frac{a}{b} > 0$ 이므로 축이 y 축의 오른쪽에 있고, -ab < 0 이므로 y 절편이 음수인 그래프이다.

21. 다음 중 옳지 <u>않은</u> 것은?

- a > 0 일 때, $\sqrt{(-a)^2} = a$ 이다. a < 0일 때, $-\sqrt{(-a)^2} = a$
- a > 0 일 때, $\sqrt{16a^2} = 4a$ 이다.
- $\sqrt{a^2} = |a|$ 이다. a < 0 일 때, $\sqrt{(3a)^2} = 3a$ 이다

해설

- a > 0 일 때, $\sqrt{(-a)^2} = a$ ② a < 0 일 때, $-\sqrt{(-a)^2} = -(-a) = a$
- a > 0 일 때, $\sqrt{16a^2} = 4a$ a 의 부호와 관계없이 $\sqrt{a^2}=|a|$
- a < 0 일 때, $\sqrt{(3a)^2} = -3a$

22. $a^2-b^2=(a-b)(a+b)$ 임을 활용하여, $1^2-3^2+5^2-7^2+9^2-11^2+13^2-15^2+17^2-19^2$ 을 계산하면?

① -100 ② -200 ③ -300 ④ -450 ⑤ -540

해설

 $1^{2} - 3^{2} + 5^{2} - 7^{2} + 9^{2} - 11^{2} + 13^{2} - 15^{2} + 17^{2} - 19^{2}$ $= (1 - 3)(1 + 3) + (5 - 7)(5 + 7) + \dots + (17 - 19)(17 + 19)$ = -2(1 + 3) - 2(5 + 7) - 2(9 + 11) - 2(13 + 15) - 2(17 + 19) $= -2(1 + 3 + 5 + \dots + 17 + 19)$ $= -2 \times 5 \times 20$ = -200

23. $5x + 2 \le 4x + 5$ 이고 x는 자연수 일 때, 다음 이차방정식을 풀면?

 $x^2 - 6x + 5 = 0$

- ① x = 1, x = 3 ② x = 1, x = 5 $4 \quad x = 2, \ x = 3$ $3 \quad x = 2, \ x = 5$
- 3x = 1

해설

 $5x + 2 \le 4x + 5$ 에서 $x \le 3$ 이다.

따라서 *x*의 값은 1, 2, 3이다. $x^2-6x+5=0$ 를 만족하는 x의 값은 $x=1,\ x=5$ 이므로

이차방정식의 해는 x = 1이다.

24. (x+y+4)(x+y) = 12 일 때, x+y 의 값의 합을 구하면?

① 2 ②-4 ③ -6 ④ -8 ⑤ 10

A = x + y라 하면 (A+4)A = 12 $A^2 + 4A - 12 = 0$ (A-2)(A+6) = 0

 $\therefore A = 2 \, \Xi \stackrel{\smile}{\sqsubset} A = -6$

따라서 x+y의 값의 합은 2+(-6)=-4이다.

- **25.** 포물선 $y = -2x^2 bx + c$ 에서 b < 0, c > 0 이면 꼭짓점은 제 몇 사분면 위에 있는가?
 - 원점
- 제1 사분면③ 제2 사분면
- ④ 제3 사분면 ⑤ 제4 사분면

해결
$$y = -2x^2 - bx + c = -2\left(x + \frac{b}{4}\right)^2 + \frac{b^2}{8} + c = -2\left(x + \frac{b}{4}\right)^2 + \frac{b^2 + 8c}{8}$$

$$\therefore 꼭짓점의 좌표는 \left(-\frac{b}{4}, \frac{b^2 + 8c}{8}\right)$$
그런데 $b < 0, c > 0$ 이므로 $-\frac{b}{4} > 0, \frac{b^2 + 8c}{8} > 0$

그런데
$$b < 0$$
, $c > 0$ 이므로 $-\frac{b}{4} > 0$, $-\frac{b^2}{4}$