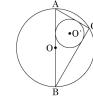
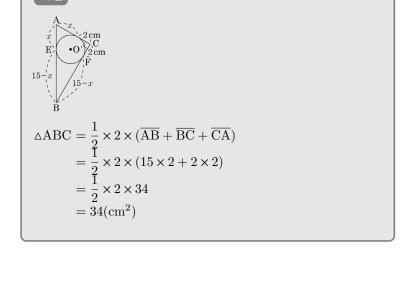
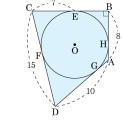

1. 다음 그림에서 \overrightarrow{AB} , \overrightarrow{AC} 는 원 O 의 접선이고 두 점 B, C 는 원 O 의 접점이다. $\angle BOC = 120^\circ$, $\overrightarrow{BO} = 5 \mathrm{cm}$ 일 때, 다음 중 옳지 <u>않은</u> 것은?



① $\overline{AB} = \overline{AC}$ ③ $\angle OBA = \angle OCA$ \bigcirc $\triangle OAB \equiv \triangle OAC$


 $\angle BAO = 30^{\circ}$ 이므로 1:2=5: \overline{AO} $\therefore \overline{AO} = 10 \,\mathrm{cm}$

1.2 3.113 ...1

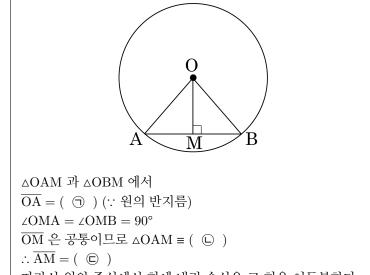

2. 다음 그림에서 $\triangle ABC$ 의 외접원의 지름의 길이는 15cm 이고 내접원의 지름의 길이는 4cm 이다. \overline{AB} 가 외접원의 지름일 때, $\triangle ABC$ 의넓이를 구하면? (단, $\angle C$ 는 직각이다.)

- ① 31cm^2 ④ 34cm^2
- $2 32 \text{cm}^2$
- $33 cm^2$
- $\odot 35 \text{cm}^2$

3. 다음 그림과 같이 사각형 ABCD는 원 O의 외접사각형이고 점 E,F,G,H 는 접점이다. 이 때, $\angle B=90^\circ$ 이고 $\overline{AB}=8,\ \overline{CD}=$ $15, \overline{\mathrm{AD}} = 10$ 일 때, 원 O 의 반지름은?

① 2 ② 3 ③ 4

4 5

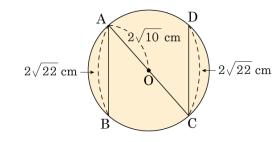

외접사각형의 성질에 의해 $15+8=10+\overline{\mathrm{BC}}$.: $\overline{\mathrm{BC}}=13$

따라서 $\overline{\mathrm{BE}}=6$ 이다. 이 때, 원의 중심에서 두 접점 E, H 에 선을 그으면 원의 반지름과

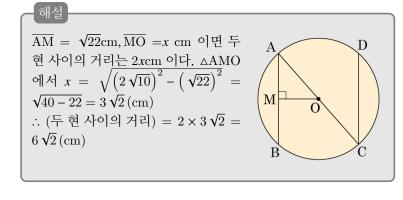
접선은 수직으로 만나므로 사각형 BEOH 는 정사각형이 된다.

그러므로 원의 반지름은 6 이다.

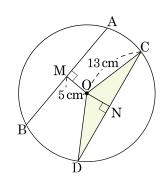
4. 다음은 원의 중심에서 현에 수선을 그었을 때, 그 현이 이등분됨을 설명한 것이다. () 안에 알맞은 것을 순서대로 나열하면?


따라서 원의 중심에서 현에 내린 수선은 그 현을 이등분한다.

 $\bigcirc \overline{OB} \bigcirc \triangle OBM \bigcirc \overline{BM}$


 $\Delta {
m OAM}$ 과 $\Delta {
m OBM}$ 에서 $\overline{
m OA}=\overline{
m OB}$ (∵ 원의 반지름), $\angle {
m OMA}=$ $\angle OMB = 90^{\circ}$, $\overline{\mathrm{OM}}$ 은 공통이므로 $\Delta\mathrm{OAM} \equiv \Delta\mathrm{OBM}$

 $\therefore \overline{\mathrm{AM}} = \overline{\mathrm{BM}}$


반지름의 길이가 $2\sqrt{10} \mathrm{cm}$ 인 원 O 에서 평행인 두 현 AB 와 CD 의 **5.** 길이가 모두 $2\sqrt{22}$ cm 이다. 이 때, 두 현 사이의 거리는?

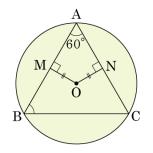
- ④ 6cm
- ① $\frac{3\sqrt{2}}{2}$ cm ② $3\sqrt{2}$ cm \bigcirc 2 $\sqrt{11}$ cm
- $\boxed{3}6\sqrt{2}cm$

- 6. 다음 그림의 원 O 에서 색칠한 부분의 넓이는? (단, $\overline{AB} = \overline{CD}$)

- $\textcircled{1} \ \ 35 \mathrm{cm}^2$ 460cm^2
- $2 40 \text{cm}^2$ $\Im 72 \text{cm}^2$
- 352cm^2

M 13 cm 5 cm 12 cm

 $\overline{AB} = \overline{CD}$ 이므로 $\overline{OM} = \overline{ON} = 5 \mathrm{cm}$ 이다.

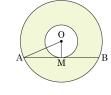

해설

피타고라스 정리에 의해 $\overline{\rm CN} = \sqrt{13^{2-}5^2} = 12$

또한, $\overline{\mathrm{CN}} = \overline{\mathrm{DN}} = 12\mathrm{cm}$

 $\therefore \triangle OCD = \frac{1}{2} \times 24 \times 5 = 60 (cm^2)$

다음 그림과 같이 원의 중심 O 와 두 7. 현 AB, AC 사이의 거리가 같고 $\overline{\mathrm{AB}}$ = 6cm, $\angle BAC = 60^\circ$ 이다. 이 때, $\triangle ABC$ 의 넓이는?

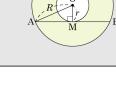

- ① $4\sqrt{3} \text{ cm}^2$ ② $6\sqrt{2} \text{ cm}^2$
- $\boxed{3}9\,\sqrt{3}\,\mathrm{cm}^2$
- (4) $12\sqrt{2} \text{ cm}^2$ (5) $12\sqrt{3} \text{ cm}^2$

해설 $\overline{\mathrm{OM}} = \overline{\mathrm{ON}} \Rightarrow \overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ 이다.

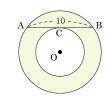
그런데, $\angle A=60$ ° 이므로 모든 각의 크기가 60° 로 같다.

따라서 △ABC 는 정삼각형이다. $\triangle ABC = \frac{\sqrt{3}}{4} \times 6^2 = 9\sqrt{3} \text{ cm}^2$ 이다.

다음 그림에서 두 원의 중심이 점 O 로 같고, 색칠한 부분의 넓이가 8. $48\pi {
m cm}^2$ 일 때, 작은 원에 접하는 $\overline{
m AB}$ 의 길이는?


 $18\sqrt{3}$ cm

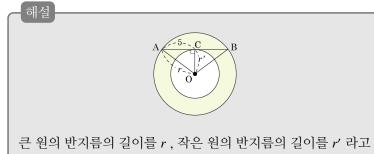
② $4\sqrt{3}$ cm


 $3 8\sqrt{3}\pi cm$

큰 원의 반지름을 R , 작은 원의 반지름을 r 이라 두면, R =

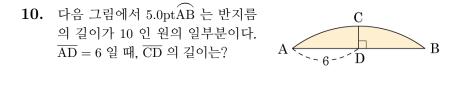
 $\overline{\mathrm{OA}}, \mathrm{r} = \overline{\mathrm{OM}}$ 이다. (색칠한 부분의 넓이) = $\pi \left(R^2 - r^2\right) = 48\pi$ 이므로 $R^2 - r^2 = 48$ $\overline{\text{AM}} = \sqrt{\overline{\text{OA}^2} - \overline{\text{OM}^2}} = \sqrt{R^2 - r^2} = \sqrt{48} = 4\sqrt{3}$ $\overline{AB} = 2\overline{AM} = 2 \times 4\sqrt{3} = 8\sqrt{3}(cm)$

다음 그림과 같이 두 개의 동심원이 있다. 큰 원의 현 AB 가 작은 원에 9. 접하고, $\overline{\mathrm{AB}}=10$ 일 때, 색칠한 부분의 넓이는?



① 10π

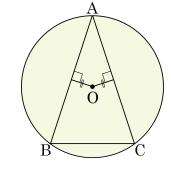
② 15π ③ 20π



 $\bigcirc 30\pi$

하자. \overline{AB} 는 작은 원의 접선이므로 $\overline{OC}\bot\overline{AB},\ \overline{AC}=rac{1}{2}\overline{AB}=5$ 이다.

직각삼각형 \triangle ACO 에서 $r^2-r'^2=5^2$ 이다. 색칠한 부분의 넓이= $\pi r^2-\pi r'^2=\pi(r^2-r'^2)=25\pi$ 이다.



① 1 ② $\sqrt{2}$ ③ $2\sqrt{2}$ ④ 2 ⑤ $\sqrt{5}$

원의 중심 O 과 점 D , 점 A를 연결한다. ΔAOD 에서 $\overline{OD} = \sqrt{\overline{AO}^2 - \overline{AD}^2} = \sqrt{10^2 - 6^2} = 8$

 $\therefore \overline{\text{CD}} = \overline{\text{OC}} - \overline{\text{OD}} = 10 - 8 = 2$

11. 다음 그림의 원 O 에서 $5.0 \mathrm{pt} \widehat{\mathrm{BC}} = 10 \pi$, $\angle \mathrm{BAC} = 30^\circ$ 일 때, $5.0 \mathrm{pt} \widehat{\mathrm{AC}}$ 의 길이는?

① 15π ② 18π

 32π

 $4)25\pi$

 $\bigcirc 30\pi$

원의 중심에서 현이 이르는 거리가 같으면 두 현의 길이가 같으

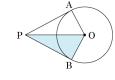
므로 $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ 인 이등변 삼각형이다. $\angle A = 30^\circ$ 이므로 $\angle ABC = 75^\circ$ 또한 원주각의 크기에 호의 길이는 비례하므로

5.0pt $\stackrel{\frown}{BC}$: 5.0pt $\stackrel{\frown}{AC}$ = $\angle BAC$: $\angle ABC$

 $\therefore 5.0 \widehat{\mathrm{ptAC}} = 25\pi$

 $10\pi : 5.0 \widehat{\text{ptAC}} = 30^{\circ} : 75^{\circ}$

- 12. 다음 그림에서 $\square ABCD$ 는 한 변의 길이가 10cm 인 정사각형이다. \overline{DE} 가 \overline{BC} 를 지름으로 하는 원에 접할 때, \overline{DE} 의 길이는?


- ① $\frac{24}{2}$ cm ② $\frac{25}{2}$ cm ④ $\frac{27}{2}$ cm ⑤ 14cm
- ③ 13cm

 $\overline{\mathrm{EP}} = \overline{\mathrm{EB}} = x - 10$ $\overline{AE} = 10 - (x - 10) = 20 - x$

 ΔAED 에서 $DE^2 = \overline{AE^2} + \overline{DA^2}$ $x^2 = (20 - x)^2 + 10^2$

40x = 500 $x = \frac{25}{2} \text{ cm}$

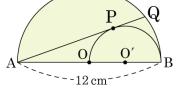
13. 다음 그림에서 \overline{PA} , \overline{PB} 는 원 O 의 접선이고 $\overline{OP}=9\mathrm{cm}$, $\overline{OA}=5\mathrm{cm}$ 일 때, ΔOPB 의 넓이는?

- ① $5\sqrt{7}$ cm² ② $5\sqrt{14}$ cm² ③ $\frac{5\sqrt{14}}{2}$ cm² $4 2\sqrt{14} \text{cm}^2$ $5 10\sqrt{7} \text{cm}^2$

해설

 $\overline{\mathrm{OA}} = \overline{\mathrm{OB}} = 5\mathrm{cm}$ 이고, $\overline{\mathrm{OB}} \bot \overline{\mathrm{PB}}$ 이므로 $\Delta\mathrm{OPB}$ 는 직각삼각형 이다. $\overline{PA} = \sqrt{9^2 - 5^2} = 2\sqrt{14} \text{(cm)}$

 $\overline{\mathrm{PA}} = \overline{\mathrm{PB}}$ 이므로 $\triangle \mathrm{OPB} = 2\sqrt{14} \times 5 \times \frac{1}{2} = 5\sqrt{14}(\mathrm{cm}^2)$


 14. AB = 12cm 를 지름으로 하는 반원

 ○ 안에 OB 를 지름으로 하는 반원

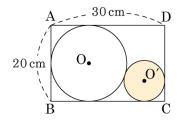
 ○ 이 있다. AQ 가 반원 O' 의 접선

 이며 점 P 가 접점이라 할 때, AQ

 의 길이는?


① $6\sqrt{5}$ cm ② $8\sqrt{2}$ cm

② $6\sqrt{6}$ cm ⑤ $8\sqrt{3}$ cm $37\sqrt{5}$ cm


(J) (V2)

해설

- ,

15. 다음 그림에서 원 O 는 직사각형 ABCD 에 내접하는 큰 원이고 원 O' 은 그 나머지 부분에 내접하는 작은 원이다. 원 O' 의 넓이는?

- ① $400(10-17\sqrt{3})$ cm² $3 420(10-19\sqrt{3})$ cm²
- $3 410(10 21\sqrt{3})$ cm²

해설

 $400(100 - 20\sqrt{3})$ cm²

 $2400(7-4\sqrt{3})$ cm²

__ 30 cm--__D 그림과 같이 보조선을 그어 △O'OH 에서 $\overline{\text{OO'}} = 10 + x$ $\overline{\mathrm{OH}} = 10 - x$ $\overline{\mathrm{O'H}} = 20 - x$ $\overline{\mathrm{OO'}}^2 = \overline{\mathrm{OH}}^2 + \overline{\mathrm{O'H}}^2 \text{ only}$ $(10+x)^2 = (10-x)^2 + (20-x)^2$ $x^2 - 80x + 400 = 0$ $x = 40 \pm 20 \sqrt{3}$ $x \leftarrow 30$ 보다 작으므로 $x = (40 - 20\sqrt{3}) \,\mathrm{cm}$ 이다. .: (원 O' 의 넓이)= $\pi(40-20\sqrt{3})^2=400(7-4\sqrt{3})(\mathrm{cm}^2)$