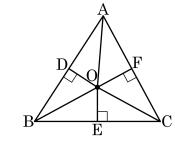
1. 다음 그림에서 점 O 는 \triangle ABC 의 외심이다. 다음 중 옳지 <u>않은</u> 것은?

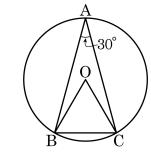


① $\triangle BEO \equiv \triangle CEO$

- ② $\overline{AF} = \overline{CF}$ ④ $\angle DAO = \angle DBO$
- ⑤∠FOA = ∠DOA

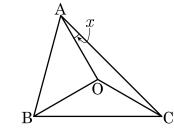
 $\angle FOA = \angle FOC$

점O 는 반지름의 길이가 $3\,\mathrm{cm}$ 인 외접원의 중심이다. $\angle\mathrm{BAC}=30^\circ$ **2**. 일 때, 부채꼴OBC 의 넓이는?



부채꼴의 중심각의 크기는 $\angle BOC = 2\angle A = 2\times 30^\circ = 60^\circ$ 이므로 부채꼴의 넓이는 $\pi\times 3^2\times \frac{60}{360} = \frac{3}{2}\pi(\text{ cm}^2)$

다음 그림에서 점 O는 \triangle ABC의 외심이고, \angle AOB : \angle BOC : \angle COA = 3 : 4 : 5일 때, \angle x의 크기는? 3.



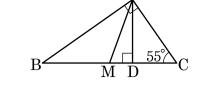
① 10° ②15°

 320° 425° 30°

해설

 $\angle AOB : \angle BOC : \angle COA = 3 : 4 : 5$ 이므로 $\angle COA = 360^{\circ} \times \frac{5}{12} = 150^{\circ}$ $\angle OAC = \angle OCA$ 이므로 $\angle x = 30^{\circ} \times \frac{1}{2} = 15^{\circ}$

4. 다음 그림과 같이 직각삼각형 ABC 의 직각인 꼭짓점 A 에서 빗변 BC 에 내린 수선의 발을 D 라 하고, \overline{BC} 의 중점을 M 이라 하자. $\angle C = 55^\circ$ 일 때, ∠AMB – ∠DAM 의 크기는?



① 70° ② 75° ③ 80°

 485°

직각삼각형의 빗변 $\overline{\mathrm{BC}}$ 의 중점 M 은 $\Delta\mathrm{ABC}$ 의 외심이다.

 $\therefore \overline{\mathrm{BM}} = \overline{\mathrm{AM}} = \overline{\mathrm{CM}}$ ∠ABM = 35°, ∠DAC = 35°이고 △ABM 은 이등변삼각형(∵

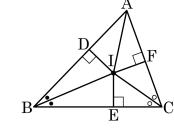
 $\overline{\mathrm{BM}} = \overline{\mathrm{AM}}$ ∴ $\angle ABM = \angle BAM = 35^{\circ}$

 $\angle AMB = 180^{\circ} - 35^{\circ} - 35^{\circ} = 110^{\circ}$

 $\angle DAM = \angle A - \angle BAM - \angle DAC = 90^{\circ} - 35^{\circ} - 35^{\circ} = 20^{\circ}$

따라서 $\angle AMB - \angle DAM = 110^{\circ} - 20^{\circ} = 90^{\circ}$

5. 다음은 '삼각형 ABC의 세 내각의 이등분선은 한 점에서 만난다'를 나타내는 과정이다. ⊙ ~ ⑥ 중 잘못된 것은?



∠B, ∠C의 이등분선의 교점을 I라 하면
i) BI는 ∠B의 이등분선이므로
ΔBDI ≡ ΔBEI ∴ ID = (③)
ii) CI는 ∠C의 이등분선이므로 ΔCEI ≡ ΔCFI ∴ IE =
(②)
iii) ID = (⑤) = (②)
iv) ID = IF 이므로 ΔADI = (②)
∴ ∠DAI = (②)
마라서 AI는 ∠A의 (②)이다.
마라서 ΔABC의 세 내각의 이등분선은 한 점에서 만난다.

④ ② : ∠FAI ⑤ ② : 이등분선

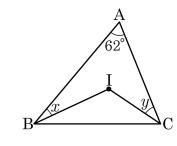
③ (□ : △BDI

 $\textcircled{1} \ \textcircled{2} \ \textcircled{L} : \overline{\text{IF}}$

 $\Delta IBE \equiv \Delta IBD(RHA 합동)$ 이므로 \overline{ID} 와 대응변인 \overline{IE} 의 길이가 같고,

해설

ΔICE ≡ ΔICF(RHA 합동) 이므로 IE와 대응변인 IF의 길이가 같다. 그러므로, IE = IF이므로 ΔADI와 ΔAFI에서 ∠ADI = ∠AFI = 90°, AI는 공통 변, ID = IF 이므로 ΔADI ≡ ΔAFI(RHS 합동) 6. \triangle ABC 에서 점 I 는 내심이다. 각 A 가 62° 일 때, $\angle x + \angle y$ 의 값은?



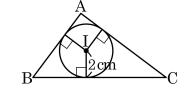
① 59° ② 60° ③ 61.5° ④ 62° ⑤ 62.5°

 $\angle BIC = 90^{\circ} + \frac{1}{2}$ $\angle A$ 에서 $\angle A = 121^{\circ}$ 그리고 $\angle IBC + \angle ICB = 180^{\circ} - 121^{\circ} = 59^{\circ}$ 이고 $\angle ABC + \angle ACB =$

 $180^{\circ} - 62^{\circ} = 118^{\circ}$

따라서 $\angle x + \angle y = 118^{\circ} - 59^{\circ} = 59^{\circ}$

다음 그림에서 점 I 는 ΔABC 의 내심이고 내접원의 반지름의 길이는 7. 2cm 이다. ΔABC 의 넓이가 24cm² 일 때, ΔABC 둘레의 길이는?



4 24cm ② 16cm ③ 20cm ⑤ 28cm ① 12cm

 $\frac{1}{2} \times 2 \times (\triangle ABC$ 의 둘레) = 24 따라서 $\triangle ABC$ 의 둘레의 길이는 24cm 이다.

8. 점 I는 △ABC의 내심이다. ĀB = $14\,\mathrm{cm}$, $\overline{\mathrm{AC}}=10\,\mathrm{cm}$, $\overline{\mathrm{DE}}/\!/\,\overline{\mathrm{BC}}$ 일 때, 14 cm) △ADE의 둘레의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

10 cm

▷ 정답: 24<u>cm</u>

▶ 답:

 $\Delta \mathrm{DBI}$ 에서 $\overline{\mathrm{DE}} \, / \! / \, \overline{\mathrm{BC}}$ 이므로 $\angle CBI = \angle DIB()$ 각 $) \cdots$

또, 점 I는 내심이므로 ∠DBI = ∠CBI···ⓒ ①, ⓒ에서 ∠DBI = ∠DIB

 $\angle BCI = \angle EIC()$ 각)··· (②

 $\therefore \ \overline{\rm DB} = \overline{\rm DI}$

 $\Delta {
m EIC}$ 에서 $\overline{
m DE}\,/\!/\,\overline{
m BC}$ 이므로

또, 점 I는 내심이므로 ∠BCI = ∠ECI··· @ ②, ②에서 ∠EIC = ∠ECI

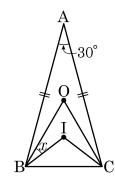
 $\therefore \ \overline{\mathrm{IE}} = \overline{\mathrm{EC}}$

따라서 $\overline{DI} + \overline{IE} = \overline{DB} + \overline{EC}$ 이므로 $\overline{DE} = \overline{DB} + \overline{EC}$

∴ (△ADE의 둘레의 길이) $= \overline{\mathrm{AD}} + \overline{\mathrm{DI}} + \overline{\mathrm{EI}} + \overline{\mathrm{AE}}$

 $= \overline{\mathrm{AD}} + \overline{\mathrm{DB}} + \overline{\mathrm{EC}} + \overline{\mathrm{AE}}$ $= \overline{AB} + \overline{AC}$ = 14 + 10 = 24 (cm)

9. 다음 그림의 $\triangle ABC$ 는 $\overline{AB}=\overline{AC}$ 인 이등변삼각형이다. $\triangle ABC$ 의 외심과 내심이 각각 점 $O,\ I$ 이고, $\angle A=30^\circ$ 일 때, $\angle x$ 의 크기는?



① 15

222.5

③ 25

④ 27.5

⑤ 30

ΔABC 의 외심이 점 O 일 때,

 $\frac{1}{2}$ \angle BOC = \angle A, \angle A = 30° 이므로

∠ABC = 75° , ∠BOC = 60° 이다. △ABC 의 내심이 점 I 일 때,

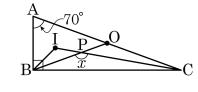
 $\triangle ABC$ 의 내심이 점 I 일 때, $\frac{1}{2}\angle A + 90^\circ = \angle BIC$ 이므로

 $\angle BIC = \frac{1}{2} \times 30^{\circ} + 90^{\circ} = 105^{\circ}$ 이다.

 ΔOBC 도 이등변삼각형이므로 $\angle OBC = 60^\circ$ 이다.

또, $\angle IBC = \frac{1}{2} \angle ABC = \frac{1}{2} \times 75^{\circ} = 37.5^{\circ}$ 이다. 따라서 $\angle OBI = \angle OBC - \angle IBC = 60^{\circ} - 37.5^{\circ} = 22.5^{\circ}$ 이다.

10. 다음 그림과 같이 $\angle B = 90^\circ$ 인 직각삼각형 ABC 에서 점 O, I 는 각각 외심, 내심이다. $\angle A = 70^\circ$ 일 때, $\angle x$ 의 크기는?



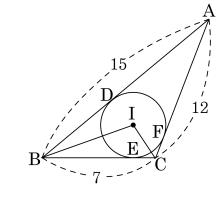
① 120° ② 130° ③ 140° ④ 150° ⑤ 160°

 $\angle ACB = 90^{\circ} - 70^{\circ} = 20^{\circ}$ 이므로 $\angle ICB = \frac{1}{2} \angle C = 10^{\circ}$

해설

 $\Delta {\rm OBC}$ 에서 $\overline{\rm OB} = \overline{\rm OC}$ 이므로 $\angle {\rm OBC} = \angle {\rm OCB} = 20^\circ$ 따라서 $\Delta {\rm PBC}$ 에서 $\angle x = \angle {\rm BPC} = 180^\circ - (10^\circ + 20^\circ) = 150^\circ$ 이다.

11. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이고, 점 D,E,F 는 접점이다. 이때, $\overline{AD} + \overline{BE} + \overline{CF}$ 는?



① 14 ② 16

317

4 20

⑤ 22

각 꼭짓점에서 접점까지의 길이는 같으므로 $\overline{\mathrm{AD}} = \overline{\mathrm{AF}}$, $\overline{\mathrm{BE}} =$

 $\overline{\mathrm{BD}}$, $\overline{\mathrm{CF}}=\overline{\mathrm{CE}}$ 이다. $\overline{\mathrm{AD}}=x$, $\overline{\mathrm{BE}}=y$, $\overline{\mathrm{CF}}=z$ 라 두면

 $\int x + y = 15$

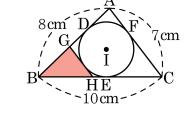
 $\begin{cases} y + z = 7 \end{cases}$

 $\begin{cases} y+z=\\ z+x=\end{cases}$

z + x = 12이므로 양변을 각각 더하면, 2(x + y + z) = 34

 $\therefore x + y + z = 17$ 따라서 $\overline{AD} + \overline{BE} + \overline{CF} = 17$

12. 다음 그림에서 원 I 는 ΔABC 의 내접원이고, \overline{GH} 는 원 I 에 접한다. 이 때, $\triangle GBH$ 의 둘레의 길이를 구하여라. (단, 단위는 생략한다.)



➢ 정답: 11

▶ 답:

해설

 $\overline{
m BD}=x,\overline{
m CE}=y,\overline{
m AF}=z$ 라고 하면 x+y=10 , y+z=7 ,

z + x = 8 에서 x + y + z = 12.5 $\overline{\mathrm{BD}} = 12.5 - 7 = 5.5$

따라서 $\triangle GBH$ 의 둘레의 길이는 $2 \times \overline{BD} = 11$ 이다.