- **1.** 다항식 $5xy yx^2 + 2x^3 + 2yz^2$ 에 대한 설명 중 옳지 <u>않은</u> 것은?
 - ① *x* 의 계수는 5*y* 이다.
 - ② x^2 의 계수는 -y이다.
 - ③ x에 대한 3차식이다.
 - ④ x에 대한 상수항은 $2yz^2$ 이다.
 - ⑤ y, z에 대한 2차식이다.

y, z에 대한 3차식이다.

2.
$$P = a^3 + 4a^2b + 2ab^2$$
, $Q = -2a^2b + 3ab^2 - b^3$ 일 때, $3P - 2Q$ 를 계산하면?

①
$$3a^3 + 12a^2b + 2b^3$$
 ② $3a^3 - 12a^2b + 2b^3$ ③ $3a^3 + 16a^2b + 2b^3$ ④ $3a^3 + 8a^2b + 2b^3$

$$3a^3 - 8a^2b + 2b^3$$

해설
$$3(a^3 + 4a^2b + 2ab^2) - 2(-2a^2b + 3ab^2 - b^3)$$
$$= 3a^3 + 12a^2b + 6ab^2 + 4a^2b - 6ab^2 + 2b^3$$
$$= 3a^3 + 16a^2b + 2b^3$$

3. 다항식
$$(x^2+1)^4(x^3+1)^3$$
의 차수는?

$$(x^2+1)^4$$
는 8 차식, $(x^3+1)^3$ 은 9 차식
따라서 $(x^2+1)^4(x^3+1)^3$ 은
 $8+9=17$ 차 다항식이다.

4. 다음 등식이 x에 대한 항등식이 되도록 실수 a,b,c의 값을 구하여라.


$$ax^2 - x + c - 3 = 2x^2 - bx - 2$$

- ▶ 답:
- ▶ 답:
- 답:
- ➢ 정답: a = 2
- \triangleright 정답: b=1
- \triangleright 정답: c=1

해설

각 항의 계수를 서로 비교한다.

5. 다음 그림의 직사각형에서 색칠한 부분의 넓이를 나타내는 식을 세워 전개하였을 때, y² 항의 계수는?

다음 그림의 사각형 AGHE, 사각형 EFCD는 정사각형이고,
$$\overline{AD} = a$$
, $\overline{AB} = b$ 일때, 사각형 GBFH의 넓이는?

①
$$a^2 - 2ab - b^2$$

6.

$$\bigcirc -a^2 + 3ab - 2b^2$$
 $\bigcirc -a^2 + 3ab - b^2$

② $a^2 + 3b^2 - 2ab$

$$\bigcirc$$
 $-a^2 + 2ab - b^2$

□GBFH = □ABCD - □AGHE - □EFCD
=
$$ab - (a - b)^2 - b^2 = ab - (a^2 - 2ab + b^2) - b^2$$

= $-a^2 + 3ab - 2b^2$

①
$$(x+1)(x^2-x+1) = x^3+1$$

다음 중 다항식의 전개가 잘못된 것은?

$$(a+2b-3c)^2 = a^2 + 4b^2 + 9c^2 + 4ab - 12bc - 6ac$$

$$(x+2)(x^2-2x+4) = x^3+8$$

$$(x^2 - xy + y^2) (x^2 + xy + y^2) = x^4 - x^2y^2 + y^4$$

$$(x-1)^2 (x+1)^2 = x^4 - 2x^2 + 1$$

8. $2x^2 - 3x - 2 = a(x - 1)(x + 2) + bx(x + 2) + cx(x - 1)$ 이 x에 대한 항등식이 되도록 a, b, c의 값을 정하면?

①
$$a = 1, b = -1, c = 2$$
 ② $a = -1, b = 1, c = -2$

(3)
$$a = 1$$
, $b = 1$, $c = 2$ (4) $a = -1$, $b = -1$, $c = -2$

$$\bigcirc$$
 $a = 1, b = -1, c = -2$

해결 수치대입법을 이용한다.
$$x = 0$$
을 대입 $-2 = -2a$ $\therefore a = 1$ $x = 1$ 을 대입 $-3 = 3b$ $\therefore b = -1$

x = -2를 대입 12 = 6c $\therefore c = 2$

9. 다음 등식이 k의 값에 관계없이 항상 성립할 때, xy의 값을 구하여라.

$$(2k+3)x + (3k-1)y + 5k - 9 = 0$$

- ▶ 답:
- ▷ 정답: -6

k에 대하여 내림차순으로 정리하면 (2x + 3y + 5)k + (3x - y - 9) = 0

이것은 k에 대한 항등식이므로 2x + 3y + 5 = 0

3x - y - 9 = 0연립방정식을 풀면 x = 2, y = -3 $\therefore xy = 2 \times (-3) = -6$ **10.** (x+y)a - (x-y)b - (y-z)c - 4z = 0이 x, y, z의 값에 관계없이 항상 성립할 때, 곱 abc를 구하면?

① 4 ② 8 ③ 16 ④ 32 ⑤ 64

$$x, y, z$$
에 대해 정리하면
$$(a-b)x + (a+b-c)y + (c-4)z = 0$$
 x, y, z 에 대한 항등식이므로
$$a = b, a+b-c = 0, c = 4$$

 $\therefore a = b = 2, c = 4$

 $\therefore abc = 16$

11. a, b는 정수이고, $ax^3 + bx^2 + 1$ 이 $x^2 - x - 1$ 로 나누어 떨어질 때, b의 값은?

$$\bigcirc -2$$
 $\bigcirc 2$ -1 $\bigcirc 3$ 0 $\bigcirc 4$ 1 $\bigcirc 5$ 2

전개했을 때 양변의 최고차항과 상수항이 같아야 하므로
$$ax^3 + bx^2 + 1$$

= $(x^2 - x - 1)(ax - 1)$
= $ax^3 - (1 + a)x^2 + (1 - a)x + 1$

양변의 계수를 비교하면 -(1+a) = b, 1-a = 0 $\therefore a = 1, b = -2$

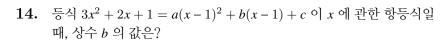
12. 다항식
$$f(x) = x^3 - 2x^2 + 5x - 6$$
을 $x - 2$, $x - 1$ 로 나누었을 때의 나머지를 각각 a,b 라 할 때, $a + b$ 의 값은?

해설
$$f(x) = (x-2)Q(x) + a$$

$$f(x) = (x-1)Q'(x) + b$$

f(x) = (x-1)Q'(x) + b $f(2) = 4 = a, \ f(1) = -2 = b$ $\therefore a+b=2$

13. x 에 대한 다항식 $4x^3 - 3x^2 + ax + b$ 가(x+1)(x-3)을 인수로 갖도록 a+b의 값을 정하여라.


해설
$$P(x)$$

$$P(x) = 4x^3 - 3x^2 + ax + b$$
라 하고 $P(x)$ 가 $(x+1)(x-3)$ 을 인수로 가지려면

$$P(-1) = -4 - 3 - a + b = 0$$
 : $a - b = -7$
 $P(3) = 108 - 27 + 3a + b = 0$: $3a + b = -81$

$$\therefore a = -22, b = -15$$

P(-1) = P(3) = 0

① 3 ② -4 ③ 2 ④8 ⑤ 6

3
$$x^2 + 2x + 1 = a(x - 1)^2 + b(x - 1) + c$$

= $(x - 1) \{a(x - 1) + b\} + c$
1 3 2 1
3 5 6 \leftarrow c
3 3 8 \leftarrow c

해설
$$x = 1 \oplus \text{대입하면 } c = 6$$
$$3x^2 + 2x + 1 = a(x - 1)^2 + b(x - 1) + 6$$
$$\rightarrow 3x^2 + 2x - 5 = a(x - 1)^2 + b(x - 1)$$
$$\rightarrow (x - 1)(3x + 5) = a(x - 1)^2 + b(x - 1)$$
$$\rightarrow 양변을 x - 1 로 나누면$$
$$3x + 5 = a(x - 1) + b = ax - a + b$$
$$\therefore a = 3, b = 8$$
$$% 준식의 우변을 모두 전개해서 계수비교하여 구할 수도 있다.$$

15. 다항식
$$A=2x^3-7x^2-4$$
 를 다항식 B 로 나눌 때, 몫이 $2x-1$, 나머지가 $-7x-2$ 이다. 다항식 $B=ax^2+bx+c$ 일 때, $a^2+b^2+c^2$ 의 값은?

① 3 ② 6 ③ 9 ④ 14 ⑤ 17

$$A = 2x^3 - 7x^2 - 4 = B(2x - 1) - 7x - 2$$
이다.

$$2x^3 - 7x^2 + 7x - 2 = B(2x - 1)$$

좌변을 $2x - 1$ 로 나누면

$$2x^3 - 7x^2 + 7x - 2 = (2x - 1)(x^2 - 3x + 2)$$

 $B = x^2 - 3x + 2$

16. $x^2 - x + 1 = 0$ 일 때, $x^5 + \frac{1}{x^5}$ 의 값은?

(5) 2

$$x^2 - x + 1 = 0$$
, 양변에 $x + 1$ 을 곱하면, $(x + 1)(x^2 - x + 1) = 0$

$$x^{3} + 1 = 0, x^{3} = -1$$
 of $x^{5} = x^{3} \times x^{2} = -x^{2}$
 $x^{5} + \frac{1}{1} = -\left(x^{2} + \frac{1}{1}\right) \dots \dots$

$$x^5 + \frac{1}{x^5} = -\left(x^2 + \frac{1}{x^2}\right) \cdot \dots \cdot \boxed{1}$$

 $x^2 - x + 1 = 0$ 를 x로 나누어 정리한다.

$$x + \frac{1}{x} = 1$$

$$x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 = -1$$

① 에 대입하면,
$$x^5 + \frac{1}{x^5} = 1$$

17. 모든 실수 x에 대하여 $2x^3-3x^2-x+1=a(x-1)^3+b(x-1)^2+c(x-1)+d$ 이라 할 때, a+b+c+d의 값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

$$2x^3 - 3x^2 - x + 1 = a(x-1)^3 + b(x-1)^2 + c(x-1) + d$$

 $x = 2$ 를 대입하면,
 $\{2 \times (2)^3\} - (3 \times 2^2) - 2 + 1 = a + b + c + d$
 $\therefore a + b + c + d = 3$

18. 다항식 f(x)를 x-1로 나눈 나머지가 3이고, x+1로 나눈 나머지가 -1일 때, $(x^2+x+2)f(x)$ 를 x^2-1 로 나눈 나머지를 R(x)라 할 때, R(1)구하시오.

해설

나머지 정리에 의해
$$f(1) = 3$$
, $f(-1) = -1$ $(x^2 + x + 2)f(x) = (x^2 - 1)Q(x) + ax + b$ $x = 1$, $x = -1$ 을 대입한다. $4f(1) = 12 = a + b \cdots$ ①

 $2f(-1) = -2 = -a + b \cdots$

Arr : 나머지 R(x) = 7x + 5 R(1) = 12

19. 다항식
$$f(x)$$
 를 $2x - 1$ 로 나누면 나머지는 -4 이고, 그 몫을 $x + 2$ 로 나누면 나머지는 2 이다. 이때, $f(x)$ 를 $x + 2$ 로 나눌 때의 나머지를 구하시 9

$$f(x) = (2x-1)Q(x) - 4$$
라 하면
$$f(-2) = -5Q(-2) - 4$$
 그런데 $Q(-2) = 2$ 이므로 $f(-2) = -14$

20. 두 다항식
$$f(x)$$
, $g(x)$ 에 대하여 $f(x)+g(x)$ 를 x^2+x+1 으로 나누면 나머지가 9 , $f(x)-g(x)$ 를 x^2+x+1 로 나누면 나머지가 -3 이다. 이 때, $f(x)$ 를 x^2+x+1 로 나눈 나머지를 구하여라.

$$f(x) + g(x) = (x^{2} + x + 1)Q_{1}(x) + 9 \cdots \bigcirc$$

$$f(x) - g(x) = (x^{2} + x + 1)Q_{2}(x) - 3 \cdots \bigcirc$$

$$\bigcirc + \bigcirc \stackrel{\triangle}{=} \stackrel{\triangle}{=} \stackrel{\triangle}{=} \stackrel{\triangle}{=} \bigcirc$$

$$2f(x) = (x^{2} + x + 1) \{Q_{1}(x) + Q_{2}(x)\} + 6$$

$$f(x) = (x^{2} + x + 1) \frac{Q_{1}(x) + Q_{2}(x)}{2} + 3$$

: 나머지는 3

$$f(x) + g(x) = (x^2 + x + 1)Q_1(x) + 9 \cdots$$

 $f(x) - g(x) = (x^2 + x + 1)Q_2(x) - 3 \cdots$
① + ①을 하면