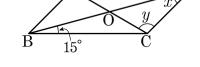
B

수를 구하여라.

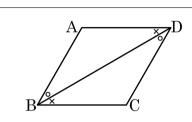


30°

평행사변형 ABCD 에서 두 대각선의 교점을 O 라 하고, \angle CAD = 30°, \angle CBD = 15° 라고 할 때, \angle x + \angle y = ()° 이다. () 안에 알맞은

☑ 답: _____

다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 말로 알맞은 것은?



평행사변형 ABCD에 점 B와 점 D를 이으면 △ABD와 △CDB 에서 ∠ABD = ∠CDB (엇각) ··· ⑤ ∠ADB = ∠CBD (엇각) ··· ⓒ 는 공통 ... @ \bigcirc , \bigcirc , \bigcirc 에 의해서 $\triangle ABD \equiv \triangle CDB$ (ASA 합동) $\therefore \overline{AB} = \overline{CD}, \overline{AD} = \overline{BC}$

 \overline{AB}

② <u>BC</u>

 $\overline{3}$ \overline{BD}

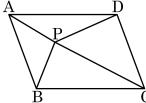
(4) DC

 \bigcirc DA

다음은 직사각형 ABCD 의 각 변의 중점을 E, F, G, H 라 할 때, □EFGH 의 둘레의 길이는? ① 16cm ② 18cm ③ 20cm $22 \mathrm{cm}$

평행사변형 ABCD 에서 ∠A 와 ∠B 의 크기의 비가 4:5일 때. ∠A+∠C 의 크기를 구하면? (4) 200° $(1) 100^{\circ}$ (3) 160°

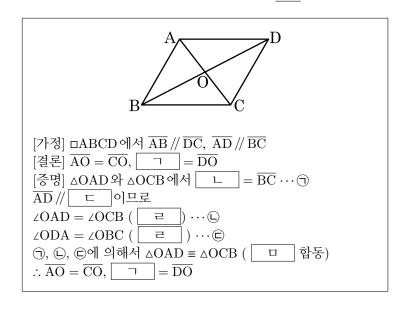
5.



다음 그림과 같이 평행사변형 ABCD의 내부에 임의의 한 점 P를 잡았다. $\triangle PAD = 24 \text{cm}^2$, $\triangle PAB = 18 \text{cm}^2$, $\triangle PBC = 45 \text{cm}^2$ 일 때,

 ΔPCD 의 넓이= cm^2 이다. 빈 칸을 채워넣어라.

6. 다음은 '평행사변형에서 두 대각선은 서로 다른 것을 이등분한다.' 를 증명한 것이다. ㄱ~ㅁ에 들어갈 것으로 옳지 않은 것은?



① $\neg : \overline{BO}$ ② $\vdash : \overline{CD}$ ③ $\vdash : \overline{BC}$

④ ㄹ: 엇각 ⑤ ㅁ: ASA

대각선이 서로 다른 것을 이동분함을 증명하 려고 할 때, 다음 중 필요한 것은?

 $\triangle ABC \equiv \triangle CDA$

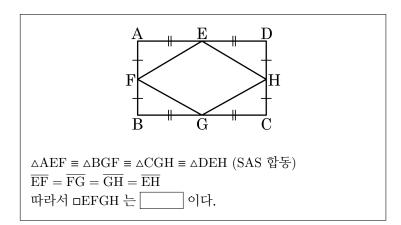
 \bigcirc $\triangle ABD \equiv \triangle CDB$

 \bigcirc \triangle ABO \equiv \triangle CDO $\triangle OBC \equiv \triangle OCD$

다음 그림과 같은 평행사변형 ABCD 의 두

 $\triangle OCD \equiv \triangle ODA$

8. 다음은 직사각형 ABCD 의 각 변의 중점을 E, F, G, H 라 할 때, □EFGH 는 □ 임을 증명하는 과정이다. □ 안에 들어갈 알맞은 것은?



① 등변사다리꼴 ② 직사각형

③ 마름모

④ 정사각형 ⑤ 평행사변형

10cm/A D E

9.

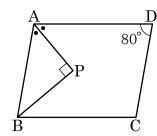
오른쪽 그림과 같은 평행사변형 ABCD 에서 \overline{CD} 의 중점을 E, \overline{AE} 의

연장선과 \overline{BC} 의 연장선의 교점을 F 라 할 때, \overline{AD} 의 길이를 구하여라.

① $4 \, \text{cm}$ ② $5 \, \text{cm}$ ③ $6 \, \text{cm}$ ④ $9 \, \text{cm}$ ⑤ $8 \, \text{cm}$

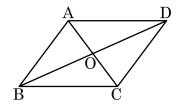
 $16\,\mathrm{cm}$

10. 다음 그림의 평행사변형 ABCD 에서 ∠PAB = ∠PAD, ∠APB = 90°, ∠D = 80° 일 때, ∠PBC 의 크기를 구하면?



① 30° ② 35° ③ 40° ④ 45° ⑤ 50°

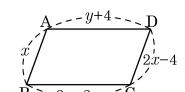
11. 다음 그림과 같은 평행사변형 ABCD 에 대하여 다음 중 옳지 <u>않은</u> 것을 골라라.



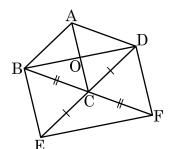
- \bigcirc $\angle ABC + \angle BCD = 180^{\circ}$
- \bigcirc $\angle ADB = \angle ACB$
- \bigcirc $\overline{AO} = \overline{CO}$
- \bigcirc $\angle BAC = \angle ACD$

▶ 답:

12. 다음 \square ABCD가 평행사변형이 되도록 하는 x, y의 값을 구하여라.



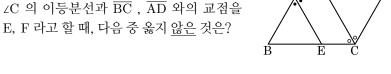
13. 다음 그림의 평행사변형 ABCD 에 대하여 $\overline{BC} = \overline{FC}, \overline{DC} = \overline{EC}$ 일 때, 다음 그림에서 평행사변형은 모두 몇 개인가?



) 1개 ② 2개

③ 3개 ④ 4개 ⑤ 5개

14. 다음 그림의 평행사변형ABCD 에서 ∠A 와



 $\overline{AB} = \overline{DF}$

② $\angle BEA = \angle DFC$

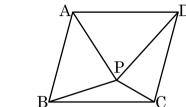
 \bigcirc $\angle AEC = \angle BAD$

 $\overline{AF} = \overline{CE}$ (4) AE = $\overline{\text{CF}}$

다음 그림과 같은 평행사변형 ABCD 에 서 \overline{AD} , \overline{BC} 의 중점을 각각 E,F 라 하고, \overline{EB} , \overline{DF} 와 대각선 AC 가 만나는 점을 각 각 G,H 라 할 때, □GBFH 의 넓이는 평행사 변형 ABCD 의 넓이의 몇 배인가?

① $\frac{1}{8}$ 배 ② $\frac{1}{5}$ 배 ③ $\frac{1}{4}$ 배 ④ $\frac{1}{3}$ 배 ⑤ $\frac{1}{2}$ 배

16. 다음 그림과 같이 넓이가 40cm² 인 평행사변형 ABCD의 내부의 한 점 P에 대하여 ΔPAD와 ΔPBC의 넓이가 4 : 1일 때, ΔPAD의 넓이는?



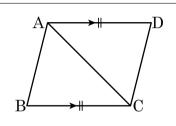
 $4 22 cm^2$ $5 25 cm^2$

17. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle C$ 의 이등분선이 \overline{AD} 와 \overline{BA} 의 연장선 과 만나는 점을 각각 E,F 라 하자. \overline{AB} = $3 \,\mathrm{cm}$, $\overline{\mathrm{BC}} = 7 \,\mathrm{cm}$ 일 때, $\overline{\mathrm{AF}}$ 의 길이를 구하 3cm 여라



18. 다음 그림과 같은 평행사변형 ABCD에서 /B 의 이등분선이 \overline{AD} 와 만나는 점을 E, \overline{CD} 의 연장선과 만나는 점을 F 라고 한다. $\overline{AB} = 7$, $\overline{\mathrm{FD}} = 3$ 일 때, $\overline{\mathrm{BC}}$ 의 길이를 구하여라.

19. 다음은 '한 쌍의 대변이 평행하고 그 길이가 같은 사각형은 평행사 변형이다.'를 증명하는 과정이다. 밑줄 친 부분 중 <u>틀린</u> 곳을 모두 고르면?



가정) $\square ABCD$ 에서 $\overline{AD} / / \overline{BC}$, $\neg . \overline{AD} = \overline{BC}$

결론) $\overline{AB} // \overline{DC}$

증명) 대각선 AC를 그으면 ΔABC와 ΔCDA 에서

ㄱ. $\overline{AD} = \overline{BC}$ (가정) ··· \bigcirc

∟. ∠DCA = ∠BAC (엇각) ··· ⓒ

ㄷ. $\overline{\mathrm{AC}}$ 는 공통 \cdots \bigcirc

 \bigcirc , \bigcirc , \bigcirc 에 의해서 $\triangle ABC \equiv \triangle CDA (ㄹ. <u>SAS</u> 합동)$

 \Box . $\angle DAC = \angle BCA$ 이므로

 $\therefore \overline{AB} / / \overline{DC}$

따라서 두 쌍의 대변이 각각 평행하므로 □ABCD는 평행사변형이다.

1) ¬

2 L

③ ⊏

④ =

(5) _□

다음 그림과 같은 평행사변형 ABCD 에 서 \overline{AE} : \overline{ED} = 1 : 2, $\triangle OFC$ = $5cm^2$ 일 때, □ABCD 의 넓이는 ()cm² 이다.)안에 알맞은 수를 구하여라.

ᆸᆞ		