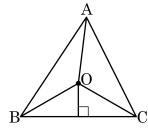
1. 다음 그림에서 점 O 는 삼각형 ABC 의 외심이고, 점 O 에서 \overline{BC} 에 내린 수선의 발을 D 라 할 때, \overline{OA} , \overline{OB} , \overline{OC} 중 길이가 가장 긴 선분은?



② OB

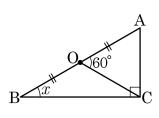
 $\overline{\text{OC}}$

- ④ ④ 모두 같다.
- ⑤ 알 수 없다.

해설

점 O 가 삼각형의 외심이므로 각각의 세 꼭짓점 A, B, C 에이르는 거리는 모두 같다.

2. 다음 그림과 같이 $\angle C = 90^{\circ}$ 인 직각삼각형 ABC 의 빗변 AB 의 중점을 O 라 하자. $\angle AOC = 60^{\circ}$ 일 때, $\angle x$ 의 크기는?



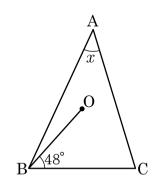
①
$$10^{\circ}$$
 ② 20° ③ 30° ④ 40° ⑤ 50°

직각삼각형의 외심은 빗변의 중점이므로
$$\overline{AO}=\overline{CO}=\overline{BO}$$
 $\overline{BO}=\overline{CO}$ 이므로 ΔBOC 는 이등변삼각형이다. 따라서 $\angle OCB=\angle B=x$ 삼각형의 한 외각의 크기는 두 내각의 합과 같으므로 $x+x=60^\circ$

해설

 $\therefore x = 30^{\circ}$

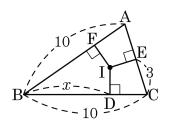
3. 다음 그림에서 점 O가 \triangle ABC의 외심이라고 할 때, \angle OBC = 48° 이다. $\angle x$ 의 크기는?



해설

 $\triangle ABC$ $\triangle ABC$ $\triangle BAC = \frac{1}{2} \angle BOC = 42$ $\triangle ABC$

4. 다음 그림에서 점 I는 \triangle ABC의 내심이다. x의 값을 구하여라.



답:

▷ 정답: 7

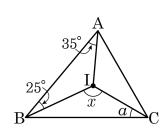
해설

점 I는 \triangle ABC의 내심이므로, $\overline{\text{CE}} = \overline{\text{CD}}$ 이다.

 $\overline{BC} = x + \overline{CD}$

 $\therefore x = 10 - 3 = 7$

5. 점 I가 내심일 때, ∠x = ()°이다. () 안에 알맞은 수를 구하여라.



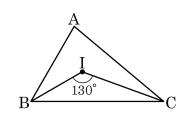
180°

 $\angle IAB = \angle IAC$, $\angle IBA = \angle IBC$, $\angle ICB = \angle ICA$ 이다. 삼각형 내각의 크기의 합은 180°이므로 $\angle ICB$ 를 $\angle a$ 라 하면,

 $35\degree + 35\degree + 25\degree + 25\degree + 2a + 2a = 180\degree$, $2a = 30\degree$ 이다. 삼각형 IBC 의 내각의 크기의 합은 $180\degree$ 이므로 $2x + 25\degree + 30\degree =$

$$\therefore \ \angle x = 125^{\circ}$$

6. 다음 그림에서 점 I는 △ABC의 내심이다. ∠BIC = 130°일 때, ∠A의 크기는?



$$270^{\circ}$$
 360° 450° 575°

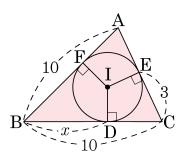
점 I가 \triangle ABC의 내심일 때, \angle BIC = $90^{\circ} + \frac{1}{2} \angle$ A이다.

점 I가 세 내각의 이등분선의 교점이므로

$$\angle BIC = 130^{\circ} = 90^{\circ} + \frac{1}{2} \angle A$$

∴
$$\angle A = 80$$
°

7. 다음 그림에서 점 $I \leftarrow \triangle ABC$ 의 내심이다. x 의 값을 구하여라.

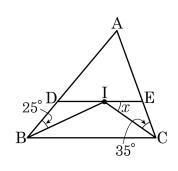


해설

점 I가 $\triangle ABC$ 의 내심이므로 $\overline{CE}=\overline{CD}=3$ 이다. $\overline{BC}=\overline{BD}+\overline{CD}=x+3=10$

$$\therefore x = \overline{BD} = 7$$

8. 다음 그림에서 점 I 는 \triangle ABC 의 내심이고, $\overline{\rm DE}//\overline{\rm BC}$ 일 때, x 의 값을 구하여라.



해설

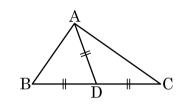
점 I 가 삼각형의 세 내각의 이등분선의 교점이므로

 $\angle IBC = \angle DBI = 25^{\circ}$, $\angle ICB = \angle ECI = 35^{\circ}$ $\overline{DE}//\overline{BC}$ 이므로 $\angle IBC = \angle DIB = 25^{\circ}$, $\angle ICB = \angle EIC = 35^{\circ}$

이다.

따라서 $\angle x = \angle EIC = 35^{\circ}$ 이다.

9. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AD} = \overline{BD} = \overline{CD}$ 일 때, $\triangle ABC$ 가 될 수 <u>없는</u> 삼각형의 종류는 무엇인가?



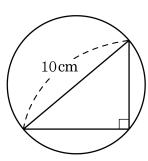
- ① 이등변삼각형
- ③ 직각삼각형
- ⑤ 정답 없음

- ② 정삼각형
 - ④ 직각이등변삼각형

해설

 $\overline{AD} = \overline{BD} = \overline{CD}$ 이므로 점 D 는 $\triangle ABC$ 의 외심이고 변의 중점에 있으므로 \overline{BC} 가 빗변인 직각삼각형이다. 이때, $\overline{AB} = \overline{AC}$ 인 경우도 가능하므로 직각이등변삼각형이 될수 있지만, 세 변이 모두 같은 정삼각형은 될 수 없다.

10. 다음 그림과 같이 빗변의 길이가 10cm 인 직각삼각형의 외접원의 반지름의 길이를 구하면?



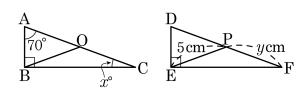
① 2cm ② 3cm ③ 4cm ④ 5cm ⑤ 6cm

직각삼각형의 외심은 빗변의 중점에 있으므로 빗변의 중점이

외접원의 중심이 된다.
$$(외접원의 반지름의 길이) = \frac{(빗변의 길이)}{2} = 5(cm)$$

해설

11. 다음은 두 직각삼각형을 나타낸 그림이다. 점 O,P 는 각각 삼각형의 빗변의 중심에 위치한다고 할 때, x+y 의 값을 구하여라.



▶ 답:

➢ 정답 : 25

해설

i) 점 O 가
$$\triangle ABC$$
 의 빗변의 중심에 있으므로 $\triangle ABC$ 의 외심이다.

따라서 $\overline{OA} = \overline{OB} = \overline{OC}$

사건에 보기되고 하는 180° 이므로 $2AOB = 40^{\circ}$ 이다. ΔOBC 는 이등변삼각형이므로 $(: \overline{OB} = \overline{OC})$

ii) 점 P 가 ΔDEF 의 빗변의 중심에 있으므로 ΔDEF 의 외심

 $\angle OBC = \angle OCB$

x = 20

∠BOC =
$$180^{\circ}$$
 – ∠AOB = 180° – 40° = 140°
∴ ∠OCB = $(180^{\circ}$ – 140°) ÷ 2 = 20°

이다. 따라서 $\overline{PD} = \overline{PE} = \overline{PF} = 5 \mathrm{cm}$

 $\therefore y = 5$

i), ii)에서 x + y = 25이다.

12. 다음 그림에서 점 O는 △ABC의 외심이다. 이때, (1), (2)의 ∠x의 크기의 합을 구하시오.

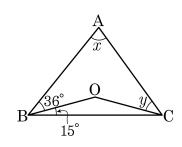
(2)

(1)
$$\angle x + 25^{\circ} + 35^{\circ} = 90^{\circ}$$
 $\therefore \angle x = 30^{\circ}$
(2) $\angle x = 26^{\circ} + \angle OCA$,
 $\angle OCA + 35^{\circ} + 26^{\circ} = 90^{\circ}$, $\angle OCA = 29^{\circ}$

$$∠OCA + 35° + 26° = 90°, ∠OCA = 29$$

∴ $∠x = 55°$
∴ $30° + 55° = 85°$

13. 다음 그림에서 점 O 는 ΔABC 의 외심일 때, ∠x - ∠y 의 크기를 구하여라.

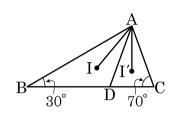


해설
$$2\angle OAC = 180^{\circ} - (36^{\circ} \times 2 + 15^{\circ} \times 2) = 78^{\circ}$$

$$\therefore \angle OAC = 39^{\circ} = \angle y$$
$$\angle x = 36^{\circ} + 39^{\circ} = 75^{\circ}$$

 $\angle x - \angle y = 75^{\circ} - 39^{\circ} = 36^{\circ}$

14. 다음 그림에서 점 I, I' 는 각각 \triangle ABD, \triangle ADC 의 내심이다. \angle B = 30°, \angle C = 70° 일 때, \angle IAI' 의 크기를 구하여라.

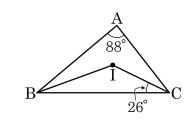


$$\angle BAI = \angle IAD, \angle DAI' = \angle CAI'$$

 $\angle A = 2\angle BAI + 2\angle DAI'$

$$\triangle ABC$$
에서 $\angle A=80$ °이므로 $\angle IAI'=\angle BAI+\angle DAI'=\frac{1}{2}\angle A=40$ °

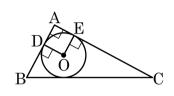
15. 다음 그림에서 점 I는 \triangle ABC의 내심이다. \angle A = 88°일 때, \angle BIC의 크기는?



점 I가
$$\triangle$$
ABC의 내심일 때, \angle BIC = $90^{\circ} + \frac{1}{2} \angle$ A이다.

$$\therefore \angle BIC = 90^{\circ} + \frac{1}{2} \angle A = 90^{\circ} + \frac{1}{2} \times 88^{\circ} = 134^{\circ}$$

16. \triangle ABC 에서 점 O 는 내심이고 \overline{AE} 의 길이가 3이다. \triangle ABC = 48 일 때, 세 변의 길이의 합은?



① 16 ② 24 ③ 28 ④ 32 ⑤ 36

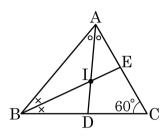
세 변의 길이를 각각
$$a,b,c$$
라 하면 \overline{AE} 는 내접원의 반지름의 길이와 같으므로 $\triangle ABC=\frac{1}{2}r(a+b+c)$ 에서 $a+b+c=48\times\frac{2}{3}=32$

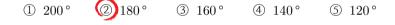
17. 어떤 직각삼각형 ABC의 외접원의 원의 넓이가 36π cm²이라고 할때, 이 직각삼각형의 빗변의 길이는?

① 4cm ② 6 cm ③ 9cm ④ 12cm ⑤ 18cm

해설 직각삼각형의 외심은 빗변의 중심에 위치하므로 ΔABC의 외접원의 중심은 빗변의 중점이다. 외접원의 넓이가 36πcm²이므로 반지름의 길이는 6cm이다. 따라서 이 삼각형의 빗변의 길이는 외접원의 지름의 길이와 같으므로 12cm이다.

18. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이다. $\angle C=60$ °일 때, $\angle ADB$ 와 $\angle AEB$ 의 크기의 합은? (단, \overline{AD} 와 \overline{BE} 는 각각 $\angle A$ 와 $\angle B$ 의 내각의 이등분선이다.)





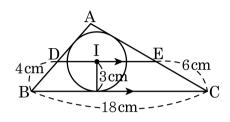
$$\triangle ABC$$
에서 세 내각의 합이 180° 이므로 $2 \circ +2 \times +60^{\circ} = 180^{\circ}$ $\circ + \times = 60^{\circ}$ 삼각형의 세 내각의 합은 180° 이므로 $\angle ADB = \angle x$, $\angle AEB = \angle y$ 라 하면 $\triangle ABE$ 에서 $2 \circ + \times + \angle x = 180^{\circ} \cdots 1$ $\triangle ABD$ 에서 $\circ + 2 \times + \angle y = 180^{\circ} \cdots 2$ $1 + 2 = 180^{\circ}$ 하면 $1 + 2 = 180^{\circ} \cdots 2$

 $\therefore 3 \times 60^{\circ} + (\angle x + \angle y) = 360^{\circ}$

 $\therefore \ \angle x + \angle y = 180^{\circ}$

해설

19. 내접원의 반지름이 3cm 인 △ABC 의 내심 I 를 지나고 변 BC 에 평행 한 직선이 변 AB, AC 와 만나는 점을 각각 D, E 라 할 때, □DBCE 의 넓이를 구하여라.



 cm^2

답:
 > 정답: 42 cm²

해설

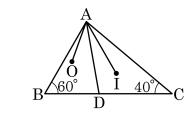
가 된다.

BI 를 그으면 점 I 는 내심이므로 ∠DBI = ∠IBC 또한, DI // BC 이므로 ∠IBC = ∠DIB (엇각) ∴ ∠DBI = ∠DIB

같은 방법으로 $\overline{\text{CI}}$ 를 그으면 $\angle{\text{ECI}} = \angle{\text{EIC}}$ 따라서 $\overline{\text{DB}} = \overline{\text{DI}} = 4\text{cm}$, $\overline{\text{EI}} = \overline{\text{EC}} = 6\text{cm}$ 이므로 $\overline{\text{DE}} = 10\text{cm}$

사각형 DBCE 에서 넓이는 $\frac{1}{2} \times (10 + 18) \times 3 = 42 \text{(cm}^2)$ 이다.

20. 다음 그림과 같이 ABC 에서 $\overline{AD} = \overline{DC}$ 가 되도록 점 D 를 잡았을 때, 점O 는 \triangle ABD 의 외심이고 점 I 는 \triangle ADC 의 내심이다. 이때, \angle OAI 의 크기는?



①
$$18^{\circ}$$
 ② 46° ③ 50° ④ 52° ⑤ 108°