1. 다음 그림과 같은 직사각형의 넓이를 \sqrt{a} 의 꼴로 나타냈을 때, a의 값을 구하여라.

답:

> 정답: *a* = 54

직사각형의 넓이는 (가로)×(세로)이므로

 $3\sqrt{2} \times \sqrt{3} = 3\sqrt{6} = \sqrt{54}$ 이다. 따라서 a의 값은 54 이다. 2. 다음 중 그 계산 결과가 같은 것을 골라라.

■ 답:

▶ 답:

▷ 정답: 句

▷ 정답: ⑤

해설

 \bigcirc $2+\sqrt{5}$, \bigcirc $2+\sqrt{5}$ 으로 계산 결과가 같다.

3. 다음 두 식이 완전제곱식일 때, a+b 의 값을 구하여라. (단, a>0)

$$4x^2 + ax + 1,9x^2 + 24x + b$$

답:

▷ 정답: a+b=20

 $4x^{2} + ax + 1 = (2x + 1)^{2}$ $a = 2 \times 2 \times 1, \ a = 4$

 $9x^{2} + 24x + b = (3x + 4)^{2}$ $b = 4^{2}, b = 16$ $\therefore a + b = 4 + 16 = 20$

4. $\frac{99 \times 145 + 99 \times 55}{199^2 - 1}$ 의 값을 구하여라.

답:

ightharpoonup 정답: $rac{1}{2}$

 $\frac{99 \times 145 + 99 \times 55}{199^2 - 1} = \frac{99(145 + 55)}{(199 + 1)(199 - 1)} = \frac{1}{2}$

① -6 ②-3 ③ 0 ④ 3

5. 다음 이차방정식 $x^2 - 3x - 18 = 0$ 의 해를 모두 구하면?

x=6, x=-3을 각각 대입하면 식이 성립한다.

6. 다음 보기에서 옳은 것을 모두 고르면?

- 보기 -

- ⊙ -3 의 제곱근은 존재하지 않는다.
- © √9 의 제곱근은 ±3 이다.
- © $\sqrt{25}$ 는 $\pm \sqrt{5}$ 와 같다.
- ② 제곱근 10 은 $\sqrt{10}$ 이다.

답:

▶ 답:

▷ 정답: ⑤

▷ 정답: ②

 \bigcirc $\sqrt{9}$ 의 제곱근은 $\pm \sqrt{3}$ 이다.

 $\bigcirc \sqrt{25}$ 는 5 와 같다.

7.
$$\sqrt{(3-2\sqrt{2})^2} - \sqrt{(2\sqrt{2}-3)^2}$$
 을 간단히 하면?

① $6-4\sqrt{2}$ ② $-4\sqrt{2}$ ③ 6② $-6+4\sqrt{2}$

 $3 > 2\sqrt{2}$ 이므로 $\left| 3 - 2\sqrt{2} \right| - \left| 2\sqrt{2} - 3 \right|$ $= 3 - 2\sqrt{2} + 2\sqrt{2} - 3 = 0$

다음 보기 중 순환하지 않는 무한소수는 모두 몇 개인가? 8.

 $\frac{\sqrt{16}}{3}$, $\sqrt{7} - 4$, 3.14, 0.2 $\dot{3}$, $-\sqrt{0.01}$, $\sqrt{49}$

① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

해설 순환하지 않는 무한소수는 무리수이다. 즉 무리수가 몇 개인지

고르면 된다. $\frac{\sqrt{16}}{3} = \frac{4}{3} \; (유리수), \; \sqrt{7} - 4 \; (무리수),$

3.14 (유리수), 0.23 (유리수),

 $-\sqrt{0.01} = -0.1 \text{ (유리수)}, \ \sqrt{49} = 7 \text{ (유리수)}$: 순환하지 않는 무한소수(무리수)는 1 개

9. a+b=6, ab=8 일 때, a^2+b^2 의 값은?

① 0 ② 10 ③ 15 ④ 18 ⑤ 20

 $a^2 + b^2 = (a+b)^2 - 2ab$ 이므로, $6^2 - 2 \times 8 = 36 - 16 = 20$

 ${f 10}$. 다음 두 식이 완전제곱식이 되게 하는 ${f A}$, ${f B}$ 의 값을 각각 구하면?

$$x^2 + 16x + A, \ 9x^2 + Bxy + 25y^2$$

- ① A=64, B=30
- ② $A=\pm 64$, $B=\pm 30$
- $\textcircled{3} A = 64 \; , \; B = \pm 30 \qquad \qquad \textcircled{4} \; \; A = \pm 64 \; , \; B = 30$

 $x^2 + 16x + A = x^2 + 2 \times 8x + 8^2 = (x+8)^6$

 $\therefore A = 64$ $9x^2 + Bxy + 25y^2$

 $= (3x)^2 \pm 2 \times (3x) \times (5y) + (5y)^2 = (3x \pm 5)^2$ $\therefore \textit{B} = \pm 30$

- **11.** $(x+2)^2 (x-1)(x+2)$ 를 전개하여 간단히 나타내면?
- ① $2x^2 + 4x + 6$ ② $2x^2 4x$ ③ $x^2 7x + 2$
- 3x + 6 3 3x 6

해설

$$(\stackrel{\sim}{\text{-L}} \stackrel{\lambda}{\rightarrow}) = (x+2) \{x+2-(x-1)\}$$
$$= (x+2) \times 3 = 3x+6$$

12. (x-2y)(x-2y-3)-10 을 인수분해하면(x-2y+m)(x-2y+n) 일 때, mn 의 값은?

10-10

해설

② 3 ③ 10 ④ 2 ⑤ -2

x-2y=t 라 하면, $t(t-3) - 10 = t^2 - 3t - 10$ = (t-5)(t+2)

= (x - 2y - 5)(x - 2y + 2)

∴ m = -5, n = 2

 $\therefore mn = -10$

13. 인수분해와 $x+y=3.1,\ x-y=11$ 임을 이용하여 $(x^2-4x+4)-(y^2-2y+1)$ 의 값을 구하여라.

▶ 답:

▷ 정답: 1

해설

 $(x^2 - 4x + 4) - (y^2 - 2y + 1)$ $= (x - 2)^2 - (y - 1)^2$ $= \{(x - 2) + (y - 1)\} \{(x - 2) - (y - 1)\}$ = (x + y - 3)(x - y - 1)이므로 x + y = 3.1, x - y = 11 를 대입하면 $\therefore (x^2 - 4x + 4) - (y^2 - 2y + 1)$ $= (3.1 - 3)(11 - 1) = 0.1 \times 10 = 1$ 이다.

- $14. \quad x^2 49 + 14y y^2$ 이 x 의 계수가 1 인 두 일차식의 곱으로 인수분해될 때, 두 일차식의 합을 구하면?

 - ① 2(x-y) ② y+14
- 32x

해설

(4) 2x - 2y - 7 (5) x - y + 2

 $x^{2} - (y^{2} - 14y + 49) = x^{2} - (y - 7)^{2}$ = (x + y - 7)(x - y + 7) $\therefore (x + y - 7) + (x - y + 7) = 2x$

15. 이차방정식 $x^2 + 3x - 28 = 0$ 을 풀면?

- ① $x = 4 \, \text{\Pi} = -7$ ② $x = -4 \, \text{\Pi} = 7$
- ⑤ $x = 1 \, \text{\pm L} \, x = -3$
- ④ $x = 3 \pm \frac{1}{2} x = -1$

 $x^2 + 3x - 28 = 0$

(x - 4)(x + 7) = 0 $\therefore x = 4$ 또는 x = -7

16. 다음 중 옳은 것은?

- ① 정수가 아닌 유리수는 유한소수이거나 순환소수이다. ② 순환소수가 아닌 무한소수는 유리수이다.
- ③ 순환소수는 무리수이다.
- ④ 무한소수는 무리수이다.
- ⑤ 무한소수는 순환소수이다.

유리수는 유한소수 또는 순환소수로 나타낼 수 있다.

해설

무리수는 순환하지 않는 무한소수로 나타내어진다.

17. a > 0, b > 0 일 때, 다음 중 옳지 <u>않은</u> 것을 모두 고른 것은?

18. $\sqrt{23}$ 의 소수 부분을 a 라고 할 때, a(a+8) - 7 의 값은?

①0 ②1 ③2 ④3 ⑤4

 $4 < \sqrt{23} < 5$ 이므로 $a = \sqrt{23} - 4$ $a + 4 = \sqrt{23}$ 의 양변을 제곱하면

 $a+4=\sqrt{23}$ 의 양면을 제곱하면 $a^2+8a+16=23$

 $a^{2} + 8a = 7$ $\therefore a(a+8) - 7 = a^{2} + 8a - 7 = 0$

19. 다음 중 $3x^2y^3 - 2x^3y^2$ 의 인수를 모두 찾아라.

 □
 □

 □
 □

 □
 □

답:

 ▷ 정답: ⑤

 ▷ 정답: ⑥

▷ 정답: ②▷ 정답: ②

 $3x^2y^3 - 2x^3y^2 = x^2y^2(3y - 2x)$

20. 다음에 주어진 두 식에 대한 설명으로 <u>틀린</u> 것은?

$$A = a^2b - ab^2$$

$$B = a^3 - ab^2$$

- ① 식 A 의 인수는 7 개이다.
- ② (a+b) 는 식 B 의 인수이다.
- ③ 식 B 의 인수는 7 개이다.④ 식 A 와 식 B 의 공통인 인수는 (a b) 이다.
- ⑤ ab 는 식 A 의 인수이다.

$A = a^2b - ab^2 = ab(a - b)$

B = $a^3 - ab^2 = a(a^2 - b^2) = a(a - b)(a + b)$ 식 A 의 인수는 a, b, (a - b), ab, a(a - b), b(a - b), ab(a - b)이므로 7 개이다. 식 B의 인수는 a, (a - b), (a + b), a(a - b), a(a + b), (a - b)(a + b), a(a - b)(a + b)이므로 7 개이다. **21.** $x^2 - 3x = 7$ 일 때, x(x-1)(x-2)(x-3) + 4 의 값은?

① 28 ② 35 ③ 63 ④ 67 ⑤ 140

 $(x^2 - 3x)(x^2 - 3x + 2) + 4$ 에서 7(7 + 2) + 4 = 67 이다.

- **22.** (x-1)(x-3)(x-5)(x-7) + k 가 완전제곱식이 되도록 상수 k 의 값은?

- ① 2 ② 4 ③ 6 ④ 11
- **③**16

해설 (x-1)(x-7)(x-3)(x-5) + k

 $= (x^2 - 8x + 7)(x^2 - 8x + 15) + k$ $x^2 - 8x = A$ 로 놓으면,

(A+7)(A+15) + k

 $= A^2 + 22A + 105 + k = (A+11)^2$

 $\therefore 105 + k = 11^2 = 121$ $\therefore \ k = 16$

23. 다음 제곱근표를 이용하여 $\sqrt{2004}$ 의 값을 구하면?

	수	0	1	2	3	4
•	3.0	1.732	1.735	1.738	1.741	1.744
	4.0	2.000	2.002	2.005	2.007	2.010
	5.0	2.230	2.238	2.241	2.243	2.245
•						

① 44.72 ② 34.64 ③ 34.70 ④ 34.76

③44.76

 $\sqrt{2004} = \sqrt{4 \times 501} = 2\sqrt{501}$ $= 2 \times \sqrt{5.01 \times 100}$

해설

 $=20\sqrt{5.01}$

주어진 표에서 5.01 = 2.238

 $\therefore 20 \times 2.238 = 44.76$

24. 다음 중 $x^2y^2 - x^2y - xy^2 + xy$ 의 인수는?

① x-1 ② x+1 ③ y+1 ④ x+y ⑤ x-y

 $x^{2}y^{2} - x^{2}y - xy^{2} + xy = xy(xy - x - y + 1)$ $= xy \{x(y - 1) - (y - 1)\}$ = xy(x - 1)(y - 1)

25. $A = -1^2 + 2^2 - 3^2 + 4^2 - 5^2 + 6^2 - 7^2 + 8^2 - 9^2 + 10^2$, B = 9945 라 할 때, $B^2 - A^2$ 의 값을 구하여라.

답:

▷ 정답: 98900000

 $A = -1^{2} + 2^{2} - 3^{2} + 4^{2} - 5^{2} + 6^{2}$ $-7^{2} + 8^{2} - 9^{2} + 10^{2}$ $= (2^{2} - 1^{2}) + (4^{2} - 3^{2}) +$ $(6^{2} - 5^{2}) + (8^{2} - 7^{2}) + (10^{2} - 9^{2})$ = (2 - 1)(2 + 1) + (4 - 3)(4 + 3) + (6 - 5) (6 + 5) + (8 - 7)(8 + 7) + (10 - 9)(10 + 9) = 3 + 7 + 11 + 15 + 19 = 55 $\therefore B^{2} - A^{2} = (B + A)(B - A)$ = (9945 + 55)(9945 - 55) $= 10000 \times 9890$ = 98900000