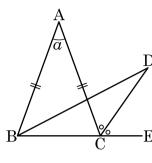
다음 그림에서 △ABC 는 이등변삼각형이다. ∠ACD = ∠DCE, ∠ABD = 2∠DBC, ∠A = a 일 때, ∠BDC 의 크기를 a 로 나타내면? A Λ



①
$$15^{\circ} - \frac{5}{12}a$$
 ② $15^{\circ} + \frac{5}{12}a$ ③ $-15^{\circ} + \frac{5}{12}a$ ④ $15^{\circ} + \frac{5}{14}a$

△ABC 가 이등변삼각형이므로 ∠ACB = ∠ABC = 3v 이고

내각의 함은 180° 이므로
$$a + 6y^\circ = 180^\circ$$
∴ $y^\circ = 30^\circ - \frac{1}{6}a$
또한 ∠ACD = $\frac{1}{2}(180^\circ - 3y) = 90^\circ - \frac{3}{2}y$ 이코
△BCD 의 내각의 함은 180° 이므로
$$180^\circ = \angle BDC + \angle DCB + \angle CBD \qquad 180^\circ = \angle BDC + 90^\circ + \frac{3}{2}y + y$$

∠DBC = y 라고 하면 ∠ABD = 2∠DBC = 2y

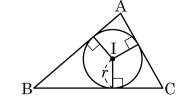
$$\frac{5}{2}y \circ] 므로$$

$$\therefore \angle BDC = 90^{\circ} - \frac{5}{2}y$$

$$= 90^{\circ} - \frac{5}{2} \left(30^{\circ} - \frac{1}{6}a\right)$$

$$= 15^{\circ} + \frac{5}{12}a$$

2. 다음 그림에서 점 I 는 \triangle ABC 의 내심이다. \triangle ABC 의 둘레의 길이가 40 cm 이고 \triangle ABC 의 넓이가 60cm^2 일 때, 내접원의 반지름의 길이는?

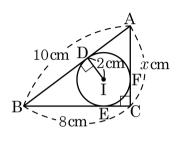


① 1cm ② 2cm ③ 3cm ④ 4cm ⑤ 5cm

 $\frac{1}{2} \times r \times 40 = 60$ 따라서 반지름의

따라서 반지름의 길이는 3cm 이다.

3. 다음 그림에서 점 I 가 삼각형 ABC 의 내심이고, 점 D,E,F 가 내접 원의 접점일 때, *x* 값을 구하여라.



cm

답:

➢ 정답: 6 cm

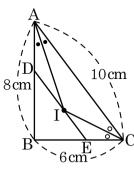
해설

점 I 가 삼각형의 내심이므로 $\overline{AD}=\overline{AF},\overline{BE}=\overline{BD},\overline{CE}=\overline{CF}$ 이다.

내심의 반지름이 2 이므로 $\overline{\text{CE}} = \overline{\text{CF}} = 2$ 이다.

 $\overline{\text{BE}} = 6 = \overline{\text{BD}}, \overline{\text{AD}} = 4 = \overline{\text{AF}}$ 이므로 $\overline{\text{AC}} = \overline{\text{AF}} + \overline{\text{FC}} = 2 + 4 = 6 \text{ (cm)}$ 이다.

4. 다음 그림과 같이 $\triangle ABC$ 에서 $\angle A$ 와 $\angle C$ 의 이등분선의 교점을 점 I 라고 하고 점 I 를 지나고 \overline{AC} 에 평행한 직선과 \overline{AB} , \overline{BC} 와의 교점을 각각 D,E 라 할 때, $\triangle ABC$ 의 둘레의 길이를 구하여라.



cm

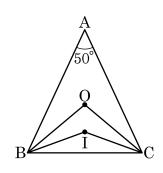
▷ 정답 : 14 cm

단:

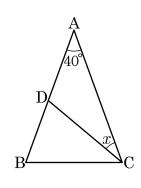
해설

점 I 가 내심이고 $\overline{\rm DE}//\overline{\rm AC}$ 일 때, $(\Delta \rm BED)$ 의 둘레의 길이 $)=\overline{\rm BC}+\overline{\rm BA}$ 따라서 $\Delta \rm BED$ 의 둘레의 길이는 $14\rm cm$ 이다.

5. 점 O 는 \triangle ABC 의 외심이고 점 I 는 \triangle OBC 의 내심일 때, \angle IBC 의 크기는?

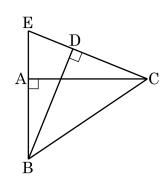


6. 다음 $\triangle ABC$ 에서 $\overline{AB} = \overline{AC}$, $\overline{CB} = \overline{CD}$, $\angle A = 40$ °일 때, $\angle x$ 의 크기는?



$$\triangle ABC$$
에서
$$\angle ABC = \angle ACB = \frac{1}{2}(180\,\circ - 40\,\circ) = 70\,\circ$$
 $\triangle CDB$ 에서

∠BCD = 180° - (2 × 70°) = 40° 따라서 ∠x = 70° - 40° = 30°이다. 7. 다음 그림에서 두 개의 삼각형 ABC 와 DBC 는 $\angle A = \angle D = 90^\circ$ 인 직각삼각형이다. \overline{AB} 의 연장선과 \overline{CD} 의 연장선이 만나는 점을 E 라하고 $\overline{AB} = \overline{CD}$, $\angle ACB = 34^\circ$ 일 때, $\angle E$ 의 크기를 구하여라.



▶ 답:

▷ 정답: 68 °

 $\overline{\mathrm{BC}}$ 는 공통빗변, $\overline{\mathrm{AB}}=\overline{\mathrm{CD}}$ 이므로

 \triangle ABC 과 \triangle DCB 에서 \angle A = \angle D = 90°.

△ABC ≡ △DCB (RHS 합동)

 $\angle ABC = 2DCB \text{ (ref.)} = 3)$ $\angle ABC = 90^{\circ} - 34^{\circ} = 56^{\circ}, \ \angle DBC = \angle ACB = 34^{\circ}$ $\angle ABD = \angle ABC - \angle DBC = 56^{\circ} - 34^{\circ} = 22^{\circ}$

 $\angle E + \angle ABD = 90^{\circ}$

△EBD 에서

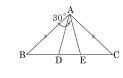
 $\therefore \angle E = 90^{\circ} - 22^{\circ} = 68^{\circ}$

8. 어떤 직각삼각형 ABC의 외접원의 원의 넓이가 $36\pi \text{ cm}^2$ 이라고 할때, 이 직각삼각형의 빗변의 길이는?

① 4cm ② 6 cm ③ 9cm ④ 12cm ⑤ 18cm

해설

직각삼각형의 외심은 빗변의 중심에 위치하므로 ΔABC의 외접원의 중심은 빗변의 중점이다. 외접원의 넓이가 36πcm²이므로 반지름의 길이는 6cm이다. 따라서 이 삼각형의 빗변의 길이는 외접원의 지름의 길이와 같으므로 12cm이다. 9. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 $\overline{AB} = \overline{BC}$ 위에 $\overline{AB} = \overline{BE}$, $\overline{AC} = \overline{CD}$ 가 되도록 두 점 E, D 를 잡고 $\angle DAE = 30^\circ$ 일 때, $\angle CAE$ 의 크기를 구하여라.



▶ 답:

➢ 정답 : 45°

$$\overline{AC} = \overline{CD}, \angle DAC = \angle ADE$$

$$\overline{AB} = \overline{BE} = \overline{AC} = \overline{CD}$$
 이므로 $\angle B = \angle C$
 $\triangle ABE \equiv \triangle ACD \text{ (SAS 합동)}$

$$\overline{\mathrm{AD}} = \overline{\mathrm{EA}}$$
, $\Delta \mathrm{ADE}$ 는 이등변삼각형

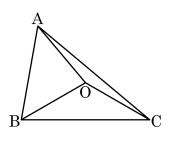
∴ ∠ADE =
$$(180^{\circ} - 30^{\circ}) \times \frac{1}{2} = 75^{\circ}$$

$$\overline{AC} = \overline{CD}$$
이므로 $\angle CAD = \angle ADC = 75^{\circ}$

 $\angle CAE = 75^{\circ} - 30^{\circ} = 45^{\circ}$

10. 다음 그림에서 점 O는 \triangle ABC의 외심이고, \angle AOB : \angle BOC : \angle COA =

2:3:4일 때, ∠BAC의 크기를 구하면?



①
$$45^{\circ}$$
 ② 50° ③ 55° ④ 60° ⑤ 65°

$$\angle BOC = 360^{\circ} \times \frac{3}{9} = 120^{\circ}$$
이므로
 $\angle BAC = \frac{1}{2} \times \angle BOC = 60^{\circ}$