- 1. $(1+i)x^2 + (1-i)x 6 2i$ 가 순허수가 되는 실수 x 의 값을 구하면?
 - <u>1</u> -3
- ② -2 ③ -1 ④ 2 ⑤ 3

주어진 식을 정리하면 $(x^2 + x - 6) + (x^2 - x - 2)i$ 이고

순허수가 되기 위해선 $x^2 + x - 6 = (x+3)(x-2) = 0$ 이어야 하므로 x = -3 또는 x = 2 이다. 그런데 $x^2 - x - 2 \neq 0$ 이어야 하므로 $x \neq 2$

따라서 x = -3

2. 등식 $\left(\frac{2+i}{1+\sqrt{2}i}\right)\left(\frac{1-4i}{1-\sqrt{2}i}\right)=a+bi$ 를 만족하는 실수 $a,\ b$ 에 대하 여 a-3b 의 값을 구하여라.

답:

> 정답: a - 3b = 9

(좌변) $= \frac{(2+i)(1-4i)}{(1+\sqrt{2}i)(1-\sqrt{2}i)}$ $= \frac{2-8i+i-4i^2}{1-2i^2}$ $= \frac{6-7i}{3} = 2-\frac{7}{3}i \text{ 이므로}$ $2-\frac{7}{3}i = a+bi$ 복소수가 서로 같을 조건에 의하여 $a=2, b=-\frac{7}{3}$ $\therefore a-3b=2-3\times\left(-\frac{7}{3}\right)=2+7=9$

3. 복소수 $z=i(a+\sqrt{5}i)^2$ 이 $z=\overline{z}$ 가 되도록 실수 a 의 값을 구하면?

- ① 5 ② $\sqrt{5}$ ③ 0 ④ ±5
- $\boxed{\$} \pm \sqrt{5}$

- $z = i(a^2 5 + 2a\sqrt{5}i)$ = $-2a\sqrt{5} + (a^2 5)i$ $z = \bar{z}$ 이면 실수이므로 허수부분이 0이다. $\therefore \ a = \pm \sqrt{5}$

4. $\frac{1}{2} + \frac{\sqrt{3}}{2}i = \frac{x+i}{x-i}$ 를 만족하는 실수 x의 값은 ?

① 1 ② $\sqrt{2}$ ③ $\sqrt{3}$ ④ 2
⑤ -5

 $(1 + \sqrt{3}i)(x - i) = 2(x + i)$ $(x + \sqrt{3}) + (\sqrt{3}x - 1)i = 2x + 2i$ 복소수가 서로 같을 조건에 의하여 $x + \sqrt{3} = 2x, \ \sqrt{3}x - 1 = 2$ $\therefore x = \sqrt{3}$

해설

5. 다음 중 옳은 것은?

- ① $(1 + \sqrt{-1})^3 = 2i + 4$ ② $\frac{\sqrt{8}}{\sqrt{-2}} = 2i$
- $(-\sqrt{-3})^2 = 3$
- $(\sqrt{-5})^3 = 5\sqrt{5}i$

 $\boxed{\bigcirc} \sqrt{-3}\sqrt{-9} = -3\sqrt{3}$

① -2 + 2i

 \bigcirc -2i

해설

- ③ -3
- $\bigcirc 4 -5\sqrt{5}i$

6.
$$\alpha = 1 + i$$
, $\beta = 1 - i$ 일 때, $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ 의 값을 구하면?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

7. 다음 등식을 만족하는 실수 x의 값을 a, y의 값을 b라 할 때, a + 2b의 값을 구하여라. (단, $\overline{x + yi}$ 는 x + yi 의 켤레복소수이다.)

$$(2+i)(\overline{x+yi}) = 5(1-i)$$

답:

▷ 정답: 7

 $(2+i)(\overline{x+yi}) = 5(1-i)$

 $(\overline{x+yi}) = \frac{5(1-i)}{2+i} = 1-3i$

$$x + yi = 1 + 3i$$

$$a = 1, b = 3$$

 $\therefore a + 2b = 7$

8. 자연수 n에 대해 $x = \left(\frac{\sqrt{2}}{1+i}\right)^{2n} + \left(\frac{\sqrt{2}}{1-i}\right)^{2n}$ 라 하자. x가 될 수 있는 모든 수의 합을 구하면?

① 2*i*

 $\bigcirc -2i$ $\bigcirc 0$ $\bigcirc 0$ $\bigcirc 0$ $\bigcirc 0$ $\bigcirc 0$ $\bigcirc 0$ $\bigcirc 0$

 $x = \left\{ \left(\frac{\sqrt{2}}{1+i} \right)^2 \right\}^n + \left\{ \left(\frac{\sqrt{2}}{1-i} \right)^2 \right\}^n$ $= \left(\frac{2}{2i}\right)^n + \left(\frac{2}{-2i}\right)^n$ $= \left(\frac{1}{i}\right)^n + \left(-\frac{1}{i}\right)^n = (-i)^n + i^n$ i^n $\stackrel{\mathsf{c}}{\leftarrow} n = 4k$, n = 4k+1 , n = 4k+2 , n = 4k+3 인 경우에 따라 각각 달라지므로 (k 는 자연수) (i) n = 4k 이면 x = 1 + 1 = 2(ii) n = 4k + 1 이면 x = -i + i = 0(iii) n = 4k + 2 이면 x = -1 - 1 = -2(iv) n = 4k + 3 이면 x = i - i = 0x = 2, 0, -2따라서, x가 될 수 있는 모든 수의 합은 0

 $\sqrt{a}\,\sqrt{b}=-\sqrt{ab},\;rac{\sqrt{c}}{\sqrt{b}}=-\sqrt{rac{c}{b}},\;\;|\;a+b|$ >| c |인 $a,\;b,\;c$ 에 대하여 $\sqrt{(a+b+c)^2} - |a+b| - \sqrt{c^2} \stackrel{\circ}{\longrightarrow} \stackrel{\circ}{\longrightarrow} ?$

① 2a ② 2b ③ -2c ④ -2a ⑤ -3b

 $\sqrt{a}\sqrt{b} = -\sqrt{ab}$ 이므로, $a \le 0, b \le 0$

 $\dfrac{\sqrt{c}}{\sqrt{b}} = -\sqrt{\dfrac{c}{b}}$ 이므로, $b < 0, \ c \geq 0$

|a+b| > |c|이므로, -(a+b) > 0

- $\therefore a+b+c<0$
- \therefore (주어진 식) =|a+b+c|-|a+b|-|c|= -(a+b+c)+(a+b)-c

10. 실수가 아닌 복소수 z 가 $z^5 = 1$ 일 때, $(1-z)(1-z^2)(1-z^3)(1-z^4)$ 의 값을 구하면?

해설

① 0 ② 1 ③ -1 ④5 ⑤ -5

 $z^{5} = 1$ 이므로 $z^{5} - 1 = 0$ 에서 $(z-1)(z^{4} + z^{3} + z^{2} + z + 1) = 0$ $z \neq 1$ 이므로 $z^{4} + z^{3} + z^{2} + z + 1 = 0$ (준식) $= (1-z)(1-z^{4})(1-z^{2})(1-z^{3})$ $= (2-z-z^{4})(2-z^{2}-z^{3})$ $= 4-(z+z^{2}+z^{3}+z^{4})$ = 5