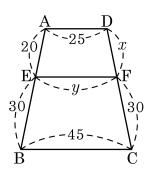

A---12--- D

다음 그림과 같은 $\square ABCD$ 가 평행사변형이 되도록 하는 x의 값은?

x + 4 = 3x - 4이므로 x = 4이다.


2. 다음 사각형 중 평행사변형이 <u>아닌</u> 것은?

평행사변형의 두 쌍의 대변의 길이와 두 쌍의 대각의 크기는 같다.

⑤ $130^{\circ} + 40^{\circ} \neq 180^{\circ}$

3. 다음 그림에서 $\overline{AD}//\overline{EF}//\overline{BC}$ 일 때, x, y 의 값을 각각 구하면?

- ① x = 30, y = 33
- 3 x = 30, y = 30
- ⑤ x = 20, y = 35

$$x = 20, y = 33$$

 $4 \quad x = 20, \ y = 30$

해설

 $\overline{\mathrm{EB}} = \overline{\mathrm{FC}}$ 이므로 x 는 $\overline{\mathrm{AE}}$ 와 같은 20 이다.

 $y \leftarrow \overline{AE} : \overline{EB} = 2 : 3$ 을 이용

점 A 와 점 C 를 연결할 때 \overline{EF} 와 만나 생긴 교점을 G 라고 하자. $\overline{AE}: \overline{AB} = 2:5$, $\overline{AE}: \overline{AB} = \overline{EG}: \overline{BC}$

 $2:5 = \overline{EG}:45$ \therefore $\overline{EG} = 18$

 $\overline{\text{CF}}:\overline{\text{CD}}=3:5$, $\overline{\text{CF}}:\overline{\text{CD}}=\overline{\text{FG}}:\overline{\text{AD}}$

 $3:5=\overline{\mathrm{FG}}:25$ \therefore $\overline{\mathrm{FG}}=15$

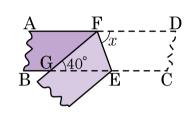
4. 동전 3개와 주사위 2개를 동시에 던질 때, 나올 수 있는 경우의 수는?

③ 154 가지

④ 244가지 ⑤ 288가지

② 144 가지

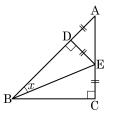
해설 $2 \times 2 \times 2 \times 6 \times 6 = 288 \ (가지)$


① 72 가지

$$\bigcirc \frac{1}{2}$$

 $2\frac{1}{3}$ $3\frac{2}{3}$ $4\frac{1}{4}$ $5\frac{1}{6}$

모든 경우는 6 가지이고, 4 의 약수는 1, 2, 4 의 3 가지이므로 구하는 확률 $\frac{3}{6} = \frac{1}{2}$ 이다.


6. 다음 그림과 같이 폭이 일정한 종이 테이프를 접었다. $\angle FGE = 40^{\circ}$ 일 때, $\angle x$ 의 크기는?

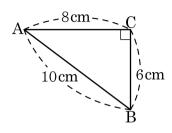
종이 테이프를 접으면
$$\angle DFE = \angle GFE = \angle x$$
이고 $\angle DFE = \angle GEF = \angle x$ (엇각) $\angle GFE = \angle GEF = \angle x$ $\angle x = \frac{180° - 40°}{2} = 70°$

각형 ABC 에서 $\overline{AD} = \overline{DE} = \overline{EC}$ 일 때, $\angle x$ 의 크기는? ① 22°

(4) 23.5°

 $\angle BDE = \angle BCE = 90^{\circ}$, $\overline{DE} = CE$, BE 는 공통, △DBE ≡ △CBE (RHS 합동)

25°


다음 그림과 같이 $\overline{AC} = \overline{BC}$ 인 직각이등변삼

∠DBE = ∠CBE 이고 ∠DBE + ∠CBE = ∠ABC = 45° 이므로

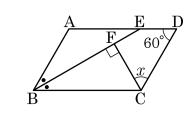
③ 23°

$$\therefore \angle x = \angle DBE = 22.5^{\circ}$$

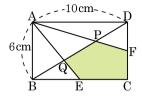
8. 다음 그림과 같은 직각삼각형에서 $\overline{AB}=10$ cm, $\overline{BC}=6$ cm, $\overline{AC}=8$ cm 일 때, $\triangle ABC$ 의 외접원의 넓이는?

①
$$36\pi \text{cm}^2$$

$$25\pi \text{cm}^2$$


 $3 22\pi \text{cm}^2$

$$40\pi \text{cm}^2$$


$$\Im 16\pi \text{cm}^2$$

외접원의 반지름은 빗변의 길이의 반이므로 $\frac{10}{2}=5({\rm cm})$ 따라서 넓이는 $\pi \times 5^2=25\pi({\rm cm}^2)$ 이다.

9. 다음 그림의 평행사변형 ABCD 에서 $\overline{\text{BE}}$ 는 $\angle{\text{B}}$ 의 이등분선이고, $\overline{\text{BE}}\bot\overline{\text{CF}}$ 이다. $\angle{\text{D}}=60^\circ$ 일 때, \angle{x} 의 크기는?

10. 다음 그림과 같은 직사각형 ABCD 에서 점 E 와 F 가 각각 \overline{BC} , \overline{CD} 의 중점일 때. 오각형 PQECF 의 넓이는?

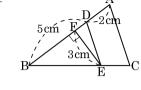
① $10 \, \text{cm}^2$

② $15 \, \text{cm}^2$

- $3 20 \, \text{cm}^2$ $30 \, \text{cm}^2$
- $(4) 25 \, \text{cm}^2$

 \overline{AC} 를 그으면 점 Q 는 $\triangle ABC$ 의 무게중심이고 \overline{AC} 와 \overline{BD} 가 만나는 점을 () 라고 하면

$$\Box OQEC = \frac{1}{3} \triangle ABC$$

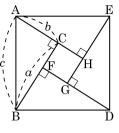

마찬가지의 방법으로 계산하면 $\Box POCF = \frac{1}{3} \triangle ACD$

$$\Box POCF = \frac{1}{3} \triangle ACD$$

∴ (오각형 PQECF의 넓이) =
$$\frac{1}{3}$$
□ABCD
= $\frac{1}{3} \times 60 = 20$ (cm²)

11. 다음 그림에서 AC//DE 이고 EF⊥AB 일 때,△ABC 의 넓이를 구하면?

- ① $12.9\,\mathrm{cm}^2$ ② $13.8\,\mathrm{cm}^2$
- $3)14.7 \,\mathrm{cm}^2$ 4 15.6 cm²
- $\odot~16.5\,\mathrm{cm}^2$



 $\triangle BDE = \frac{1}{2} \times 5 \times 3 = 7.5 (\text{ cm}^2)$

△DBE ∽ △ABC

 \overline{BD} : $\overline{BA} = 5:7$ $\triangle DBE : \triangle ABC = 25:49$

 $7.5 : \triangle ABC = 25 : 49$ ∴ $\triangle ABC = 14.7 (\text{cm}^2)$ 12. 다음은 4개의 합동인 직각삼각형을 맞대어서 정사각형 ABDE를 만든 것이다. 정사각형 ABDE에서 CH의 길이와 □CFGH의 사각형 ċ 의 종류를 차례대로 말한 것은?

- ① a-b, 마름모
- ③ a b, 정사각형
- ⑤ a b. 직사각형

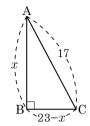
④ b − a. 정사각형

해설

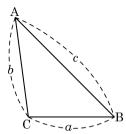
각형이다.

 $\overline{CH} = \overline{AH} - \overline{AC} = a - b$

□CFGH는 네 변의 길이가 같고. 내각이 모두 90°이므로 정사


13. 다음 그림의 △ABC 에서 ∠B = 90° 일 때, x 의 값을 모두 구하면? (정답 2개)

(5) 1

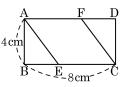

해설
$$17^2 = (23-x)^2 + x^2, \ 289 = 529 - 46x + 2x^2, \ x^2 - 23x + 120 = 0$$

$$(x-15)(x-8) = 0$$
$$\therefore x = 15 \ \text{\pm \frac{1}{1}} \ x = 8$$

14. 다음 그림과 같은 △ABC 에서 ∠C > 90° 일 때, 다음 중 옳은 것을 모두 고르면?(정답 2 개)

①
$$c^2 = a^2 + b^2$$

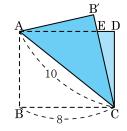
$$b^2 < c^2 - a^2$$



② $b^2 > a^2 + c^2$

15. 다음 직사각형 ABCD 에서 $\overline{AE} = \overline{CE}$ 가 되도록 점 E 를 잡고, $\overline{AE} = \overline{AF}$ 가 되도록 점 F 를 잡을 때. $\square AECF$ 의 둘레의 길이는?

 $20\,\mathrm{cm}$


- ① 22 cm ② 21 cm
- ④ 19 cm ⑤ 18 cm

$$\overline{\text{AE}} = \overline{\text{CE}} = x \text{ cm}$$
 라 하면

 $\overline{\mathrm{BE}} = (8 - x) \,\mathrm{cm}$ 이므로

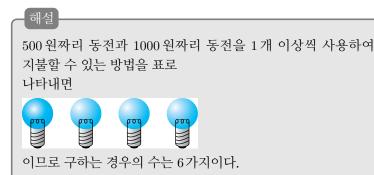
$$x^2 = 4^2 + (8 - x)^2 :: x = 5$$

16. 다음 그림은 직사각형 ABCD 를 \overline{AC} 를 접는 선으로 하여 접은 것이다. ΔCDE 의 넓이는?

3 6

i)
$$\overline{\rm DE}=x$$
 , $\overline{\rm CE}=8-x$, $\overline{\rm CD}=6$
ii) $x^2+6^2=(8-x)^2$

17. 두 개의 주사위 A, B 를 동시에 던질 때, 나오는 눈의 수의 합이 7 이 되는 경우의 수는? 3 5


 \bigcirc 3

(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) 의 6 가지

18. 500 원짜리 동전 2개와 100 원짜리 동전 3개가 있다. 두 가지 동전을 각각 한 개 이상 사용하여 지불할 수 있는 금액의 모든 경우의 수는?

① 2가지
 ④ 5가지

② 3가지 ⑤6가지 ③ 4가지

19. 남학생 2 명, 여학생 3 명을 일렬로 세울 때, 남학생은 남학생끼리, 여학생은 여학생끼리 서로 이웃하게 세우는 경우의 수는?

① 12 가지 ② 18 가지 ③ 24 가지 ④ 36 가지 ⑤ 48 가지

해설

남학생들을 묶어서 A, 여학생들을 묶어 B 라고 하면 A, B를 일렬로 세우는 경우는 2 가지이다. 이 때, 남학생들끼리 서로 자리를 바꾸는 방법은 $2 \times 1 = 2$ (가지)이고, 여학생들끼리 서로 자리를 바꾸는 방법은 $3 \times 2 \times 1 = 6$ (가지)이다. 그러므로 구하는 경우의 수는 $2 \times 2 \times 6 = 24$ (가지)이다.

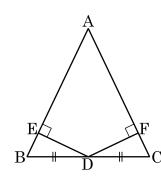
20. 0, 1, 2, 3, 4 의 숫자가 적힌 5 장의 카드에서 임의로 2 장을 뽑아 두 자리의 정수를 만들 때, 35 미만일 확률은?

①
$$\frac{1}{8}$$
 ② $\frac{3}{4}$ ③ $\frac{1}{2}$ ④ $\frac{1}{4}$ ⑤ $\frac{5}{8}$

해설
$$5 \text{ 장의 카드로 만들 수 있는 두 자리 정수는 } 4 \times 4 = 16 \text{ (가지)}$$
이다. 35 이상인 경우를 찾으면 $40,41,42,43$ 이다. 따라서 35 미만일 확률은 $1-\frac{4}{16}=\frac{3}{4}$ 이다.

① 5% ② 7% ③ 12% ④ 15% ⑤ 18%

22. 주머니 속에 흰 공이 4개, 검은 공이 6개 들어 있다. 공을 한 개씩 연속해서 두 번 꺼낼 때, 처음은 흰 공, 두 번째는 검은 공일 확률을 구하면? (단, 꺼낸 공은 다시 넣지 않는다.)

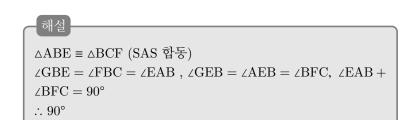

 $\bigcirc \frac{1}{2}$ $\bigcirc \frac{5}{21}$ $\bigcirc \frac{5}{12}$

해설 처음에 흰 공을 꺼낼 확률은
$$\frac{4}{10}$$

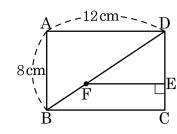
① $\frac{2}{3}$

남은 공 9개 중에서 검은 공을 꺼낼 확률은 $\frac{6}{5}$ 따라서 구하는 확률은 $\frac{4}{10} \times \frac{6}{9} = \frac{4}{15}$

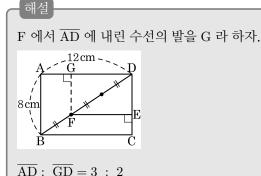
23. 다음 그림의 $\triangle ABC$ 에서 변 BC의 중점을 D라 하자. 점 D에서 변 AB, AC에 내린 수선의 발을 각각 E, F라 하고, $\overline{DE} = \overline{DF}$ 일 때, 다음 중 옳지 않은 것은?



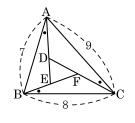
- ① $\overline{\mathrm{EB}} = \overline{\mathrm{FC}}$
- ② $\angle EBD = \angle FCD$
- ③ ABC 는 이등변삼각형
- ④ ΔEBD ≡ ΔFCD (RHA 합동)
- ⑤ $\triangle AED \equiv \triangle AFD (RHS 합동)$


④ △EBD ≡ △FCD (RHS 합동)

24. 정사각형 ABCD 에서 BE = CF 이고 AE 와 BF 의 교점을 G 라 할 때, ∠GBE+∠BEG 의 크기는?


① 70° ② 80° ③ 90°
④ 100° ⑤ 110°

25. 오른쪽 그림의 직사각형 ABCD 에서 $\overline{AD}=12\mathrm{cm},\ \overline{AB}=8\mathrm{cm}$ 이고 점 F 는 대각선 BD 를 삼등분하는 한 점이다. F 에서 \overline{DC} 에 그은 수선의 발을 E 라 할 때, \overline{FE} 의 길이는?



① 8cm ② 7cm ③ 6cm ④ 5cm ⑤ 4cm

 $\therefore \overline{GD} = \frac{2}{3} \times \overline{AD} = 8(cm)$ 따라서 $\overline{FE} = \overline{GD} = 8(cm)$ **26.** 다음 그림에서 ∠BAD = ∠CBE = ∠ACF 이 고, \overline{AB} = 7, \overline{BC} = 8, \overline{CA} = 9 일 때, \overline{DE} : \overline{EF} 은?

4 8:7

27. 3만원을 가지고 블라우스 한 벌과 치마 한 벌을 사기 위해 쇼핑을 나갔다. 쇼핑몰을 한 번 돌고나니 3가지의 블라우스(각각 1 만 5천원, 1만 8천원, 2만 2천원)가 맘에 들었고, 3가지의 치마(각각 8천원, 1 만원, 1만 3천원)가 맘에 들었다. 가지고 있는 현금으로 살 수 있는 방법의 가짓수는?

② 3가지

⑤ 9가지

Aa, Ab, Ac, Ba, Bb, Ca의 6 가지이다.

① 1 가 지

④ 8 가 지

③ 6 가지

해설 블라우스와 치마를 차례로 (A, B, C), (a, b, c)로 두면, 각 각의 가격의 합이 가지고 있는 돈(3 만원)을 넘지 않는 경우는