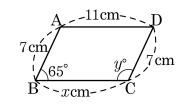

평행사변형 ABCD 에서 BE 는 ∠ABC 의 이 등분선이다. $\overline{AB}=7\mathrm{cm},\overline{AD}=9\mathrm{cm}$ 일 때, $\overline{\text{CE}}$ 의 길이를 구하시오.

▶ 답:

1.

 $\underline{\mathrm{cm}}$

▷ 정답: 9cm


해설

 $\overline{\mathrm{AB}} /\!/ \overline{\mathrm{CD}}$ 이므로

 $\angle ABE = \angle BEC$ (엇각) $\angle EBC = \angle BEC$ 이므로 $\triangle BEC$ 는 이등변삼각형이다.

 $\therefore \overline{\mathrm{CE}} = \overline{\mathrm{BC}} = \overline{\mathrm{AD}} = 9(\mathrm{cm})$

2. 다음 사각형에서 x,y 의 값을 차례대로 구한 것은? (단, $\overline{\mathrm{AB}} \, / / \, \overline{\mathrm{DC}}$)

4 115°,7

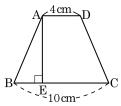
② 7,65° ⑤ 11,115° ③ 115°,11

① 11,65°

 $\overline{AB} /\!\!/ \, \overline{DC}$, $\overline{AB} = \overline{DC} = 7 (cm)$ 이므로 $\Box ABCD$ 는 평행사변형이다.

 $\therefore x = 11, \angle y = 180^{\circ} - 65^{\circ} = 115^{\circ}$

- **3.** 다음 중 마름모에 대한 설명으로 옳지 <u>않은</u> 것은?
 - 두 대각선이 직교한다.
 네 변의 길이가 모두 같다.


 - ③ 대각의 크기가 서로 같다.
 - ④ 두 대각선이 서로 다른 것을 이등분한다. ⑤ 네 각의 크기가 모두 같다.

네 각의 크기가 모두 같은 사각형은 정사각형과 직사각형이다.

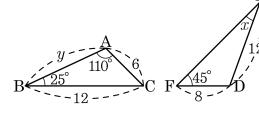
해설

4. 다음 그림과 같이 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴 ABCD의 꼭짓점 A 에서 \overline{BC} 에 내린 수선의 발을 E라 하자. $\overline{AD}=4\,\mathrm{cm}$, $\overline{BC}=10\,\mathrm{cm}$ 일 때, \overline{BE} 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

 ▶ 답:

 ▷ 정답:
 3 cm


점 D에서 \overline{BC} 에 내린 수선의 발을 F라 하면 $\triangle ABE \equiv \triangle DCF$ $\overline{EF} = \overline{AD} = 4\,\mathrm{cm}$ 이므로 $\overline{BE} + \overline{CF} +$

4 = 10(cm) BE = CF 이므로 BE = 3(cm) 이다.

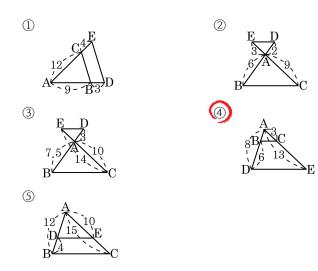
B E 10 cm

A 4 cm D

5. 다음 그림에서 $\triangle ABC$ 와 $\triangle DEF$ 는 닮은 도형이다. x,y 의 값을 차례로 구한 것은?

④ 30°,9

① $45^{\circ}, 6$


해설

- ② 45°, 9 ⑤ 45°, 12
- ③25°,9

$$\begin{split} \angle \mathbf{E} &= \angle \mathbf{B} = 25^{\circ} \;,\; \angle x = 25^{\circ} \\ \overline{\mathbf{AC}} &: \overline{\mathbf{DF}} = \overline{\mathbf{BA}} : \overline{\mathbf{ED}} \end{split}$$

6:8 = y:12 $\therefore y = 9$

6. 다음 그림에서 $\overline{\mathrm{BC}}\,/\!/\,\overline{\mathrm{DE}}$ 가 평행하지 <u>않은</u> 것은?

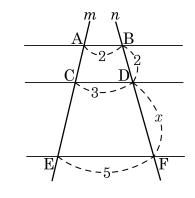
④ \overline{BC} $/\!/$ \overline{DE} 라면, \overline{AB} : \overline{AD} = \overline{AC} : \overline{AE} 이다.

2 : 8 ≠ 3 : 13 이므로 \overline{BC} // \overline{DE} 이 아니다.

7. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D 라 할 때, x 의 길이를 구하여라.

8cm 8cm B 3cm

 $\underline{\mathrm{cm}}$

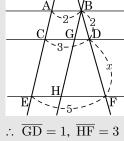

정답: 7<u>cm</u>

_

▶ 답:

 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{DC}$ 6 : 8 = 3 : (x - 3), 6x = 42, x = 7 $\therefore x = \overline{BC} = 7 \text{ cm}$

8. 다음 그림에서 $\overline{AB} /\!\!/ \overline{CD} /\!\!/ \overline{EF}$ 일 때, \overline{DF} 의 길이는?

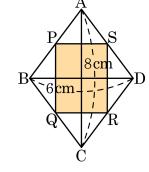

① 1 ② 2 ③ 3

4

⑤ 5

다음 그림과 같이 점 B를 지나 직선 m에 평행한 직선을 그어

직선 CD , EF와 만나는 점을 각각 G , H라 하면 □AEHB는 평행사변형이다.



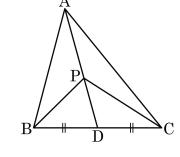
 $\overline{\mathrm{GD}}\,/\!/\,\overline{\mathrm{HF}}$ 이므로 $\overline{\mathrm{BD}}:\overline{\mathrm{BF}}=\overline{\mathrm{GD}}:\overline{\mathrm{HF}}$ 이다.

2:(2+x)=1:32 + x = 6

 $\therefore x = 4$

9. 다음 그림과 같은 마름모 □ABCD 에서 네 변의 중점을 연결하여 만든 □PQRS 의 넓이를 구하면?

 12cm^2 20cm^2

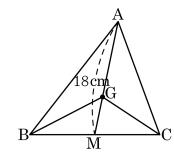

- ② 14cm² ⑤ 24cm²

 $3 18 \text{cm}^2$

마름모의 네 변의 중점을 연결한 사각형은 직사각형이 되고,

 $\overline{\mathrm{PS}} = \frac{1}{2}\overline{\mathrm{BD}} = 3\mathrm{cm}$, $\overline{\mathrm{PQ}} = \frac{1}{2}\overline{\mathrm{AC}} = 4\mathrm{cm}$ 이므로 $(\Box \mathrm{PQRS} \circlearrowleft \ \ \exists \ \ \circ) = 3 \times 4 = 12(\mathrm{\,cm^2}) \, \circ$ 다.

10. 다음 그림에서 점 P 가, $\overline{\rm AD}$ 위의 점일 때, 다음 설명으로 옳은 것을 모두 고르면?


- ① \overline{AD} 는 $\triangle ABC$ 의 중선이다. ② $\triangle ABP = \frac{1}{3} \triangle ABC$
- 3 $\triangle PBD = \triangle PCD$
- $\bigcirc \triangle APB = \triangle APC$

헤서

높이가 같은 두 삼각형에서 밑변의 길이가 같으면 넓이도 같으 므로

 $\triangle ABD = \triangle ACD$, $\triangle PBD = \triangle PCD$ 따라서 $\triangle APB = \triangle APC$

11. 다음 그림에서 $\triangle ABC$ 의 무게중심이 G이고 중선 AM의 길이가 18cm일 때, \overline{GM} 의 길이는?

①6cm

② 7cm ③ 8cm

④ 9cm

⑤ 10cm

점 G가 $\triangle ABC$ 의 무게중심이므로 $\overline{AG}:\overline{GM}=2:1$ $\therefore \overline{GM}=\frac{1}{3} \overline{AM}=\frac{1}{3} \times 18=6 \text{ (cm)}$

12. 다음 그림을 참고하여 \overline{BC} 의 길이를 구하여 라.

13cm 9cm 5.5cm D 6cm A

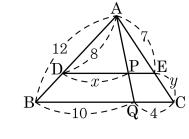
 ▶ 정답:
 16.5 cm

▶ 답:

 $\overline{AD} : \overline{AC} = 6 : 18 = 1 : 3$

해설

 $\overline{AE} : \overline{AB} = 5 : 15 = 1 : 3$ $\overline{AD} : \overline{AC} = \overline{AE} : \overline{AB} = 0.5$


 $\overline{AD}: \overline{AC} = \overline{AE}: \overline{AB}$ 이고 $\angle A$ 가 공통이므로 $\triangle ABC \bigcirc \triangle AED$

(SAS 닮음) ∴ 1:3=5.5: BC

 $\underline{\mathrm{cm}}$

.. 1.3 = 5.5 . BC 따라서 $\overline{BC} = 16.5 \, \mathrm{cm}$ 이다.

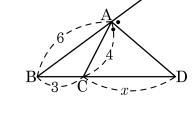
13. 다음 그림에서 $\overline{\mathrm{BC}}\,/\!/\,\overline{\mathrm{DE}}$ 일 때, 3x-2y 의 값은?

① 7 ② 13 ③ 20 ④ 27

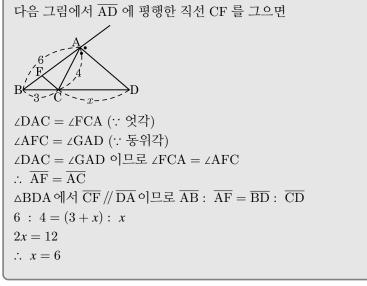
⑤ 30

$$\frac{1}{\overline{QC}} // \overline{F}$$

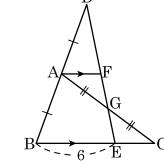
$$r = \frac{20}{}$$


BQ //
$$\overline{DP}$$
 이므로 $12:8=10:x$

$$\therefore x = \frac{20}{3}$$
 \overline{QC} // \overline{PE} 이므로 $8:4=7:y$


$$\therefore y = \frac{7}{2}$$

$$x = \frac{20}{3}, y = \frac{7}{2}$$
 이므로 $3x - 2y = 3 \times \frac{20}{3} - 2 \times \frac{7}{2} = 20 - 7 = 13$


14. 다음 그림의 $\triangle ABC$ 에서 \overline{AD} 가 $\angle A$ 의 외각의 이등분선일 때, \overline{CD} 의 길이는?

①6 ② 7 ③ 8 ④ 9 ⑤ 10

15. 다음 그림과 같은 $\triangle ABC$ 에서 \overline{BA} 의 연장선 위에 $\overline{BA}=\overline{AD}$ 인 점 D 를 정하고, \overline{AC} 의 중점을 G , 점 D 와 G 를 지나 \overline{BC} 와 만나는 점을 \overline{E} 라 한다. $\overline{BE}=6$ 일 때, \overline{EC} 의 길이를 구하면?

① 6 ② 5 ③ 4

43

⑤ 2

 $\overline{\mathrm{AF}}//\overline{\mathrm{BC}}$ 이고, $\overline{\mathrm{AG}}=\overline{\mathrm{GC}}$ 이므로 $\triangle\mathrm{GFA}\equiv\triangle\mathrm{GEC}$

해설

 $\overline{\rm AF}=\overline{\rm EC}$, $\overline{\rm AF}=\frac{1}{2}\times\overline{\rm BE}=6$

$$\therefore \overline{\mathrm{EC}} = 3$$

- **16.** 닮음비가 1 : 3 인 두 정육면체의 부피의 합이 168cm³ 일 때, 큰 정육 면체의 부피는?
 - ① $160 \,\mathrm{cm^3}$ ② $162 \,\mathrm{cm^3}$ ③ $164 \,\mathrm{cm^3}$ ④ $166 \,\mathrm{cm^3}$ ⑤ $168 \,\mathrm{cm^3}$

닮음비가 1:3 이므로 부피비는 1:27 이다. 작은 정육면체의 부피를 a라고 하면 a+27a=168

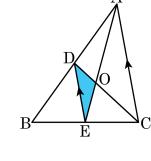
28a = 168

해설

a = 6 ∴ (큰 정육면체의 부피) = 27a = 27 × 6 = 162 (cm³)

 $\overline{AB} = 100 \mathrm{cm}$ 인 평행사변형 ABCD 에서 점 $P \leftarrow \overline{AB}$ 위를 초속 4cm의 속도로 A 에서 출 발하여 B 쪽으로, 점 Q 는 매초 $7\mathrm{cm}$ 의 속도로 $\overline{\mathrm{CD}}$ 위를 C 에서 출발하여 D 쪽으로 움직이고 있다. P 가 출발한 지 9 초 후에 Q 가 출발할 때, 처음으로 $\overline{\mathrm{AQ}}//\overline{\mathrm{PC}}$ 가 되는 것은 P 가 출발한 지 몇 초 후인지 구하여라.

▶ 답: <u>초</u> 정답: 21 초


Q 가 출발한지 t 초 후의 P 가 움직인 거리 : $\overline{\mathrm{AP}} = 4(9+t)$

해설

Q 가 움직인 거리 : $\overline{\text{CQ}} = 7t$

 $\overline{\mathrm{AP}} = \overline{\mathrm{CQ}}$ 에서 4(9+t) = 7t 이므로 t = 12∴ 12 + 9 = 21 (초) 후이다.

18. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AC} /\!/ \overline{DE}$ 이고, $\triangle BCD$ = $90\mathrm{cm}^2,\ \Delta\mathrm{OEC}\,=\,25\mathrm{cm}^2\,$ 이다. $\overline{\mathrm{DE}}$ 가 $\Delta\mathrm{ABE}$ 의 넓이를 이등분할 때, △DEO의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$

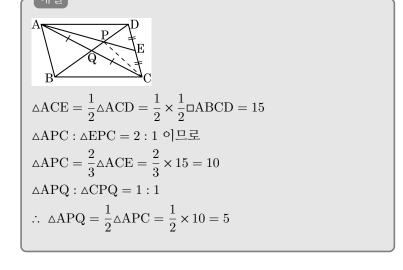
▷ 정답: 20cm²

▶ 답:

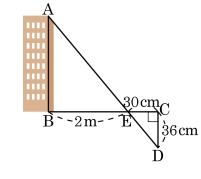
 $\overline{
m DE}$ 가 $\triangle ABE$ 의 넓이를 이등분하므로 $\overline{
m BD} = \overline{
m DA}$ $\overline{\mathrm{DE}}\,/\!/\,\overline{\mathrm{AC}}$ 이므로 $\overline{\mathrm{BD}}:\overline{\mathrm{DA}}=\overline{\mathrm{BE}}:\overline{\mathrm{EC}}$

따라서 $\overline{BE} = \overline{EC}$ $\Delta \mathrm{DBE}$ 와 $\Delta \mathrm{DEC}$ 에서 밑변과 높이가 같으므로

 $\Delta DBE = \Delta DEC = \frac{90}{2} = 45 (cm^2)$


 $\therefore \Delta DEO = \Delta DEC - \Delta OEC = 45 - 25$ $= 20(cm^2)$

19. 다음 그림과 같은 평행사변형 ABCD에서 점 E는 $\overline{\text{CD}}$ 의 중점이고 $\overline{\text{AP}}$: $\overline{\text{PE}}=2:1$ 이다. $\Box \text{ABCD}$ 의 넓이가 60일 때, $\triangle \text{APQ}$ 의 넓이를 구하여라.


B Q E

 ► 답:

 ▷ 정답:
 5

20. 건물의 높이를 알아보기 위해 축도를 그렸다. 측정한 결과가 다음 그림과 같을 때, 건물의 높이를 구하면?

4 2.3 m

① 1.8 m

해설

⑤ 2.4 m

② 2 m

③ 2.1 m

건물의 높이를 x 라 하면,

x:36=200:30따라서 건물의 높이는 2.4 m이다.