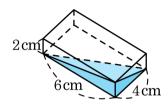

. 다음 그림은 반지름이 10 cm 인 구의 $\frac{1}{8}$ 을 잘라낸 입체도형이다. 이 입체도형의 겉넓이를 구하여라.


답:

 $\underline{\mathrm{cm}^2}$

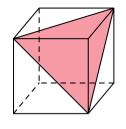
ightharpoonup 정답: $425\pi \underline{
m cm}^2$

$$4\pi \times 10^{2} \times \frac{7}{8} + \pi \times 10^{2} \times \frac{1}{4} \times 3 = 350\pi + 75\pi = 425\pi \text{(cm}^{2})$$

2. 다음 그림과 같이 직육면체 모양의 그릇에 물을 부은 다음 그릇을 기울였을 때, 남아있는 물의 양은?

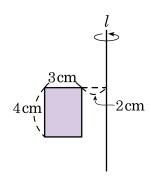
$$3 24 \text{cm}^3$$

$$V = \frac{1}{3} \times \left\{ \frac{1}{2} \times (6 \times 4) \times 2 \right\} = 8 \text{cm}^3$$

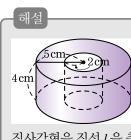

3.

다음과 같이 한 모서리의 길이가 6 cm 인 정육 면체에서 그림과 같이 잘랐을 때 색칠한 부분의 부피는?

- (1) 36 cm³ ② $72 \, \text{cm}^3$
- $396 \, \text{cm}^3$


 $4 \cdot 108 \, \text{cm}^3$

 \odot 216 cm³


 $\frac{1}{3} \times \frac{1}{2} \times 6 \times 6 \times 6 = 36 \text{ (cm}^3\text{)}$

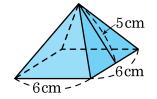
4. 다음 그림과 같은 직사각형을 직선 l을 축으로 1 회전했을 때 생기는 입체도형의 겉넓이는?

- ① $76\pi \text{cm}^2$
- $2 88\pi \text{cm}^2$
- $392\pi \text{cm}^2$

- $498\pi \text{cm}^2$
- ⑤ $106\pi \text{cm}^2$

직사각형을 직선 *l* 을 축으로 1 회전시키면 속이 빈 원기둥이 된다.

따라서 $S=2\times(5^2\pi-2^2\pi)+5\times2\pi\times4+2\times2\pi\times4=42\pi+40\pi+16\pi=98\pi(\mathrm{cm}^2)$ 이다.


5. 육각기둥의 꼭짓점, 모서리, 면의 수를 각각 v, e, f 라고 할 때, v+2e-f의 값을 구하면?

① 30 ② 40 ③ 50 ④ 60 ⑤ 70

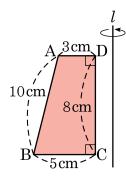
$$v = 2n, \ 2 \times 6 = 12$$

 $e = 3n, \ 3 \times 6 = 18$
 $f = n + 2, \ 6 + 2 = 8$
 $v + 2e - f$

 $= 12 + 2 \times 18 - 8 = 40$

6. 다음 정사각뿔의 겉넓이를 구하여라.

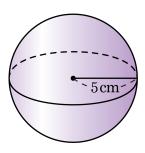
답:


 $\underline{\mathrm{cm}^2}$

정답: 96 cm²

해설

 $6 \times 6 + 6 \times 5 \times \frac{1}{2} \times 4 = 36 + 60 = 96 \text{(cm}^2)$


7. 다음 그림과 같은 사각형 ABCD 를 직선 l 을 축으로 하여 1 회전시켰다. 이때, 생기는 입체도형을 회전축을 포함하는 평면으로 자른 단면의 넓이를 구하여라.

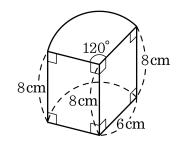
 cm^2

$$2 \times \left\{ (3+5) \times 8 \times \frac{1}{2} \right\} = 64 \left(\text{cm}^2 \right)$$

8. 반지름의 길이가 5cm 인 구를 회전축을 포함하는 평면으로 자를 때생기는 단면의 넓이는?

① πcm^2

- $2 4\pi \text{cm}^2$
 - $25\pi\mathrm{cm}^2$


 $\Im 9\pi \text{cm}^2$

 $4 16\pi \text{cm}^2$

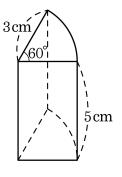
해설

구를 회전축을 포함하는 평면으로 자르면 반지름이 $5 \mathrm{cm}$ 인 원의모양이므로 단면의 넓이는 $\pi r^2 = 25 \pi (\mathrm{cm}^2)$ 이다.

9. 다음 그림과 같은 입체도형의 부피는?

$$96\pi$$
cm³

$$2 100\pi \text{cm}^3$$


$$3 108\pi \text{cm}^3$$

$$4 112\pi\mathrm{cm}^3$$

⑤
$$124\pi \text{cm}^3$$

$$V = \left(\pi \times 6^2 \times \frac{120^\circ}{360^\circ}\right) \times 8 = 96\pi \text{(cm}^3)$$

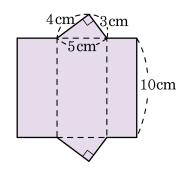
10. 다음과 같이 밑면이 부채꼴인 기둥의 겉넓이는?

 $(8\pi + 30)$ cm²

①
$$(6\pi + 15)$$
cm²

$$(3) (6\pi + 30) \text{cm}^2$$
 $(4) (10\pi + 30) \text{cm}^2$

$$(10\pi + 45)$$
cm²

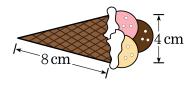

하실
$$S = 2 \times \pi \times 3^{2} \times \frac{60^{\circ}}{360^{\circ}} + \left(3 + 3 + 2\pi \times 3 \times \frac{60^{\circ}}{360^{\circ}}\right) \times 5$$

$$= 3\pi + (6 + \pi) \times 5$$

$$= 3\pi + 30 + 5\pi$$

$$= 8\pi + 30(\text{cm}^{2})$$

11. 다음 그림과 같은 전개도로 만든 도형의 겉넓이를 구하여라.



<u>cm³</u>

▷ 정답: 132 cm³

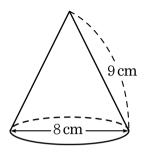
$$2 \times \left(4 \times 3 \times \frac{1}{2}\right) + 10 \times (5 + 4 + 3) = 132(\text{cm}^2)$$
 이다.

12. 밑면의 지름이 4cm, 모선의 길이가 8cm 인 원뿔 모양의 아이스크림이 있다. 이 원뿔 모양의 아이스크림의 옆면을 둘러싼 포장지의 넓이는?

 $16\pi \mathrm{cm}^2$

 $1 4\pi \text{cm}^2$

(4) $20\pi \text{cm}^2$


- $2 8\pi \text{cm}^2$
- (5) $24\pi \text{cm}^2$

부채꼴의 호의 길이는 밑면의 원의 둘레와 같다.

(부채꼴 호의 길이) = $2 \times 2\pi = 4\pi$ 이다.

따라서 $S = \frac{1}{2} \times 8 \times 4\pi = 16\pi$ 이다.

13. 다음 그림과 같은 원뿔의 겉넓이는?

③ $72\pi \text{cm}^2$

① $48\pi\mathrm{cm}^2$

 $252\pi \text{cm}^2$

 $4 132\pi \text{cm}^2$

⑤ $144\pi \text{cm}^2$

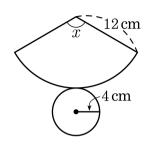
(원뿔의 겉넓이) = (밑넓이) + (옆넓이)에서 모선의 길이를 l이라고 하면

$$S = \pi r^2 + \pi r l = 16\pi + 36\pi = 52\pi \text{cm}^2$$

전개도가 다음 그림과 같은 입체도형의 겉넓이 14. 는?

①
$$16\pi \,\mathrm{cm}^2$$
 ② $24\pi \,\mathrm{cm}^2$

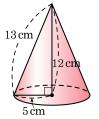
(3)
$$30\pi \text{ cm}^2$$
 (4) $45\pi \text{ cm}^2$


해설

12 cm

$$\pi \times 3^2 + \pi \times 3 \times 12 = 45\pi (\text{ cm}^2)$$

15. 다음 그림은 원뿔의 전개도이다. 부채꼴의 중심각의 크기는?



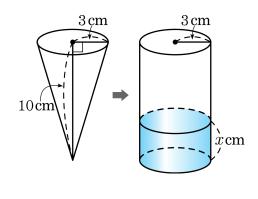
① 60° ② 90° ③ 100° ④ 120° ⑤ 135°

- 해설

반지름이 4 인 원의 둘레는 8π 이므로 부채꼴의 중심각의 크기를 구하면 $12\pi \times 2 \times \frac{x}{360} = 8\pi$ 이다. 따라서 $x=120^\circ$ 이다.

16. 다음 그림과 같이 밑면의 반지름의 길이가 $5 \, \text{cm}$, 모선의 길이가 13 cm, 높이가 12 cm 인 원뿔의 부피

(1) $325\pi \, \text{cm}^3$


를 구하면?

- ② $32\pi \, \text{cm}^3$ (3) $75\pi \text{ cm}^3$ (4) $90\pi \, \text{cm}^3$

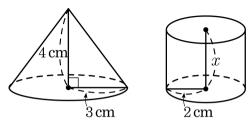
 - $100\pi\,\mathrm{cm}^3$

$$V = 5 \times 5 \times \pi \times 12 \times \frac{1}{3} = 100\pi (\text{ cm}^3)$$

17. 다음과 같이 원뿔 모양의 그릇에 물을 가득 채워 원기둥 모양의 그릇에 옮겼다. 원기둥 그릇에 담긴 물의 높이를 구하여라.

cm

$$ightharpoonup$$
 정답: $\frac{10}{3}$ $\underline{\text{cm}}$

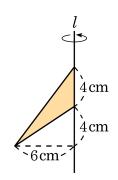

답:

해설

$$3 \times 3 \times \pi \times 10 \times \frac{1}{3} = 3 \times 3 \times \pi \times x$$
$$30\pi = 9x\pi$$

따라서 $x = \frac{10}{3}$ cm 이다.

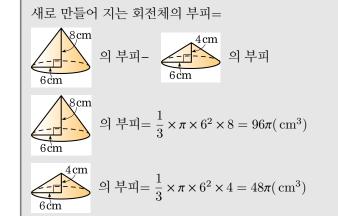
18. 다음 그림의 원뿔과 원기둥의 부피가 서로 같을 때, 원기둥의 높이는?


① 2 cm ② 3 cm ③ 4 cm ④ $2 \pi \text{cm}$ ⑤ $3 \pi \text{cm}$

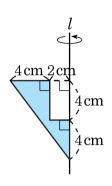
(원뿔의 부피) =
$$\frac{1}{3} \times \pi \times 3^2 \times 4 = 12\pi (\text{cm}^3)$$

(원기둥의 부피) = $\pi \times 2^2 \times x = 4\pi x (\text{cm}^2)$

$$4\pi x = 12\pi$$


$$\therefore x = 3(cm)$$

19. 다음 그림과 같은 평면도형의 색칠한 부분을 직선 l을 회전축으로 하여 1 회전시킬 때 생기는 회전체의 부피는?


 $48\pi\mathrm{cm}^3$

- ① $12\pi \text{cm}^3$
 - m^3 ② $24\pi cm^3$
- $4 56\pi \text{cm}^3$ $5 96\pi \text{cm}^3$

 \therefore (부피) = $96\pi - 48\pi = 48\pi (\text{cm}^3)$

20. 다음 그림과 같은 도형을 직선 *l* 을 축으로 하여 1 회전시킬 때 생기는 입체도형의 부피는?

①
$$62\pi \text{cm}^3$$

$$268\pi \text{cm}^3$$

$$74\pi \text{cm}^3$$
 3 $74\pi \text{cm}^3$

$$480\pi \text{cm}^3$$

⑤
$$86\pi \text{cm}^3$$

(원뿔의 부피)=
$$\frac{1}{3}\pi \times 6^2 \times 8 = 96\pi$$

(원기둥의 부피)=
$$\pi \times 2^2 \times 4 = 16\pi$$

: (입체도형의 부피) = $96\pi - 16\pi = 80\pi (\text{cm}^3)$

21. 회전축을 포함하는 평면으로 자른 단면이 항상 원인 회전체를 말하여라.

답:	

▷ 정답: 구

구는 어느 쪽으로 잘라도 그 단면의 모양이 항상 원이다.

22. 다음 표는 정다면체에 대하여 꼭짓점의 개수, 모서리의 개수, 면의 모양을 조사하여 나타낸 것이다. 안에 알맞은 것을 차례대로 써 넣어라.

정다면체	정사면체	정육면체	정팔면체	정십이면체	정이십면체
꼭짓점의 개수	4	Э	Ŀ	20	12
모서리의 개수	Œ	12	12	2	30
면의 모양	정삼각형	정사각형	П	정오각형	H

- ▶ 답:
- ▷ 정답: 8
- ▷ 정답: 6
- ▷ 정답: 6
- ▷ 정답: 30
- ▷ 정답: 정삼각형
- ▷ 정답: 정삼각형

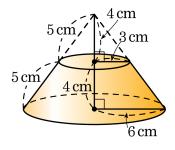
	anı	7.1	
C	211	\sim	
	211		

	정다면체	정사면체	정육면체	정팔면체	정십이면체	정이십면체
	꼭짓점의 개수	4	8	6	20	12
Ī	모서리의 개수	6	12	12	30	30
	면의 모양	정삼각형	정사각형	정삼각형	정오각형	정삼각형
	•					

23. 밑면의 반지름의 길이가 4 cm 이고 모선의 길이가 12 cm 인 원뿔의 전개도에서 부채꼴의 중심각의 크기를 구하여라.

$$2\pi \times 12 \times \frac{x}{360^{\circ}} = 2\pi \times 4$$

$$x = 360^{\circ} \times \frac{1}{3}$$


$$\therefore x = 120^{\circ}$$

24. 모서리의 개수가 30 개이고, 꼭짓점의 개수가 12 개인 정다면체는?

④ 정십이면체 ⑤ 정이십면체

해설
$$12-30+f=2$$
 $f=20$ 따라서 정이십면체이다.

25. 다음 그림과 같은 원뿔대의 부피 V 를 구하면?

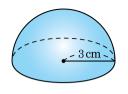
 $84\pi\mathrm{cm}^3$

① $12\pi \text{cm}^3$

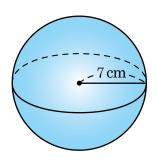
 $\bigcirc 64\pi\mathrm{cm}^3$

 $496\pi \text{cm}^3$

⑤ $144\pi \text{cm}^3$


$$V = \frac{1}{3}\pi \times 6^2 \times 8 - \frac{1}{3}\pi \times 3^2 \times 4 = 84\pi (\text{cm}^3)$$

26. 반지름의 길이가 3 cm 인 반구의 겉넓이를 구하면?


- (1) $9\pi \, \text{cm}^2$
- $327\pi \,\mathrm{cm}^2$
 - cm^2 4 $36\pi cm^2$
- $345\pi\,\mathrm{cm}^2$

$$4\pi \times 3^2 \times \frac{1}{2} + \pi \times 3^2 = 18\pi + 9\pi$$

= $27\pi (\text{cm}^2)$

27. 다음 그림과 같이 반지름의 길이가 7cm 인 구의 겉넓이는?

 $38\pi \text{cm}^2$

① $49\pi\mathrm{cm}^2$

 $2 70\pi\mathrm{cm}^2$

 $498\pi \text{cm}^2$

 $5196\pi \text{cm}^2$

해설 $S = 4\pi \times 7^2 = 196\pi (\text{cm}^2)$

28. 반지름의 길이가 3 인 구의 $\frac{1}{8}$ 을 잘라낸 입체도형의 부피는?

$$\bigcirc \frac{63}{2} \pi \text{cm}^3$$

②
$$32\pi \text{cm}^3$$

 $3 \frac{65}{2} \pi \text{cm}^3$

(4)
$$33\pi \text{cm}^3$$
 (5) $\frac{67}{2}\pi \text{cm}^3$

지원
$$V = \frac{4}{3}\pi r^3 \times \frac{7}{8} = \frac{4}{3}\pi \times 3^3 \times \frac{7}{8} = \frac{63}{2}\pi$$