.
$$x$$
에 대한 이차방정식 $2mx^2 + (5m+2)x + 4m + 1 = 0$ 이 중근을 갖도록 하는 실수 m 의 값은?

①
$$-\frac{3}{2}$$
, -2 ② $-\frac{7}{12}$, $-\frac{1}{2}$ ③ $-\frac{7}{2}$, 2
② $-\frac{7}{2}$, $\frac{3}{2}$

주어진 이차방정식의 판별식을
$$D$$
라고 하면 중근을 가질 조건은 $D=0$ 이므로
$$D=(5m+2)^2-4\cdot 2m\cdot (4m+1)=0$$

$$25m^2+20m+4-32m^2-8m=0$$

$$7m^2-12m-4=0$$

(7m+2)(m-2)=0

 $∴ m = -\frac{2}{7} £ = 2$

2. x에 대한 이차방정식 $(m+3)x^2 - 4mx + 2m - 1 = 0$ 이 중근을 갖도록 하는 실수 m의 값의 합은?

①
$$-\frac{5}{2}$$
 ② $-\frac{3}{2}$ ③ 0 ④ $\frac{3}{2}$

해설
주어진 이차방정식의 판별식을
$$D$$
라고 하면 중근을 가질 조건은
 $D=0$ 이므로

$$D = 0$$
이므로
$$\frac{D}{4} = (-2m)^2 - (m+3)(2m-1) = 0$$

$$4m^2 - (2m^2 + 5m - 3) = 0$$

$$(m-1)(2m-3) = 0$$
$$\therefore m = 1 \, \text{!`} \pm \frac{3}{2}$$

 $2m^2 - 5m + 3 = 0$

$$\therefore 1 + \frac{3}{2} = \frac{5}{2}$$

3.
$$x$$
 가 실수 일 때, 다음 중 $x + \frac{1}{x}$ 의 값이 될 수 없는 것은? (단, $x \neq 0$

$$x + \frac{1}{x} = t$$
 라 하고,
양변에 x 를 곱하면
 $x^2 + 1 = tx$
 $x^2 - tx + 1 = 0$ 에서 x 는 실수이므로
 $D = t^2 - 4 \ge 0$ $\therefore t^2 \ge 4, t \le -2$ 또는 $t \ge 2$

- **4.** 이차방정식 $x^2 x(kx 7) + 3 = 0$ 이 허근을 갖기 위한 최대 정수 k 값은?
 - ① -8 ② -4 ③ -2 ④ 5 ⑤ 2

해설
$$x^2 - x(kx - 7) + 3 = 0$$
$$x^2 - kx^2 + 7x + 3 = 0$$
$$(1 - k)x^2 + 7x + 3 = 0$$
$$(i) 주어진 방정식이 이차방정식이므로
$$x^2 의 계수는 1 - k \neq 0 이어야 한다.$$
따라서 $k \neq 1$$$

허근을 갖기 위해서는 판별식 *D* < 0이어야 하므로

(ii) 주어진 이차방정식이

판별식 D < 0이어야 하므로 $D = 7^2 - 4 \cdot (1 - k) \cdot 3 = 49 - 12 + 12k < 0$ 37 + 12k < 0

 $\therefore k < -\frac{37}{12}$ 따라서 최대정수는 -4이다. 5. 이차방정식 $x^2 + 2(k-a)x + k^2 + a^2 + b - 2 = 0$ 이 실수 k의 값에 관계없이 중근을 가질 때, a+b의 값을 구하라.

$$\frac{D}{4} = (k-a)^2 - (k^2 + a^2 + b - 2) = 0$$

$$\therefore -2ka - b + 2 = 0$$

이 식은 k의 값에 관계없이 항상 성립하므로

a = 0, b = 2 $\therefore a + b = 2$

$$b=2$$

k에 대한 항등식이다.

6. 이차식 $x^2 - 2(k-1)x + 2k^2 - 6k + 4$ 가 x에 대하여 완전제곱식이 될 때, 상수 k의 값의 합을 구하여라.

▷ 정답: 4

해설
이차식이 완전제곱식이 되면
이차방정식
$$x^2 - 2(k-1)x + 2k^2 - 6k + 4 = 0$$

이 중군을 갖는다. 따라서, $\frac{D}{4} = (k-1)^2 - (2k^2 - 6k + 4) = 0$

$$-k^{2} + 4k - 3 = 0$$

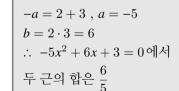
$$k^{2} - 4k + 3 = 0$$

$$(k - 1)(k - 3) = 0$$
 에서
$$k = 1 또는 k = 3$$

위의 식을 정리하면

7. 이차방정식
$$x^2 + ax + b = 0$$
의 두 근이 2, 3일 때, 이차방정식 $ax^2 + bx + 3 = 0$ 의 두 근의 합은?

①
$$\frac{1}{5}$$
 ② $\frac{2}{5}$ ③ $\frac{3}{5}$ ④ $\frac{4}{5}$ ⑤ $\frac{6}{5}$



 $x^2 + ax + b = 0$ $(a, b \leftarrow 2)$ 의 한 근이 1 + i일 때, a의 값은?

켤레근
$$1 - i$$
 도 식의 근. $(1 + i) + (1 - i) = -a$

$$(1+i) + (1-i) = -a$$

 $a = -2$

9. 다음의 이차방정식에 대한 설명 중 <u>틀린</u> 것은? (단, a, b, c는 실수이다.)

- ① 이차방정식 $ax^2 + bx + c = 0$ 의 두 근을 α , β 라 하면 $ax^2 + bx + c = a(x \alpha)(x \beta)$ 이다.
- ② 이차방정식 $ax^2+bx+c=0$ 의 두 근을 α , β , $D=b^2-4ac$ 라고 하면 $(\alpha-\beta)^2=\frac{D}{a^2}$ 이다.
- ③ 이차방정식 $ax^2 + bx + c = 0$ 이 서로 다른 부호의 두 실근을 가지기 위한 필요충분 조건은 ab < 0이다.
- ④ 이차방정식 $x^2 + ax + b = 0$ 이 서로 다른 두 실근을 가지면, $x^2 + (a 2c)x + b ac$ 도 서로 다른 두 실근을 갖는다.
- ⑤ 이차방정식 $ax^2 + bx + c = 0$ 의 두 근을 α , β 라 하면 $\alpha + \beta = -\frac{b}{a}$, $\alpha\beta = \frac{c}{a}$ (단, $a \neq 0$)

해설

③ 이차방정식 $ax^2 + bx + c = 0$ 이 서로 다른 부호의 두 실근을 가지기 위한 필요충분 조건은 ac < 0이다.

10. 이차함수
$$y = x^2 - 8x + a$$
의 그래프와 x 축과의 교점의 x 좌표가 $6, b$ 일 때, $a + b$ 의 값은?

① 11 ② 12 ③ 13 ④ 14 ⑤ 15

이차함수
$$y = x^2 - 8x + a$$
의 그래프와 x 축과의 교점의 x 좌표는 이차방정식 $x^2 - 8x + a = 0$ 의 실근이다. $x^2 - 8x + a = 0$ 에 $x = 6$ 을 대입하면 $36 - 48 + a = 0$ 에서 $a = 12$ 따라서 $x^2 - 8x + 12 = 0$ 에서 $(x - 2)(x - 6) = 0$

 $x = 2 \stackrel{\checkmark}{=} x = 6$ $\therefore b = 2 \stackrel{?}{=} a + b = 14$ **11.** $|x-1| = 3 - \sqrt{x^2}$ 의 해를 구하여라.

- ▶ 답:
- ▶ 답:
- ▷ 정답: 2
- ▷ 정답: -1

 $|x-1|=3-|x|\, \text{odd},$

|x| + |x - 1| = 3이다.

- i) x < 0 일 때, -x - (x - 1) = 3
- $\therefore x = -1$
- .. x = -1 ii) 0 ≤ x < 1 일 때,
 - x (x 1) = 3 $0 \cdot x + 1 = 3$ 이므로 불능 iii) $x \ge 1$ 일 때,
- x + (x 1) = 3 $\therefore x = 2$

따라서 구하는 해는 x = -1 또는 x = 2이다.

12. 실수
$$a,b$$
에 대하여 연산*를 $a*b=a^2+b$ 로 정의한다. 방정식 $x*(x-6)=0$ 의 두 근을 α,β 라 할 때, $\alpha+2\beta$ 의 값을 구하여라. (단, $\alpha<\beta$)

해설
$$x*(x-6) = 0$$
 에서

 $x^2 + x - 6 = 0$

$$(x+3)(x-2) = 0$$

$$\therefore x = -3, 2$$

$$\therefore \alpha = -3, \beta = 2 (\alpha < \beta)$$

$$\therefore \alpha = -3, \beta = 2 (\alpha < \beta)$$
$$\therefore \alpha + 2\beta = 1$$

13. 이차방정식 $(1-i)x^2 + (-3+i)x + 2 = 0$ 의 해는 x = a 또는 x = p + qi이다. 이 때, a + p + a의 값을 구하여라. (단. a. p. a는 실수)

이다. 이 때,
$$a + p + q$$
의 없들 구아이다. (단, a , p , q 는 결구)

답:

해설
$$(1-i)x^2 + (-3+i)x + 2 = 0$$
의 양변에 $1+i$ 를 곱하면

$$(1+i)(1-i)x^2 + (1+i)(-3+i)x + 2(1+i) = 0$$

$$2x^2 - 2(2+i)x + 2(1+i) = 0$$

$$x^2 - (2+i)x + 1 + i = 0$$

$$(x-1) \{x - (1+i)\} = 0$$

 $x = 1 \oplus x = 1 + i$

$$\therefore a + p + q = 3$$

14. 이차방정식 $x^2 + 6x + a = 0$ 의 한 근이 $b + \sqrt{3}i$ 일 때. a + b의 값을 구하여라. (단, a,b는 실수이고 $i = \sqrt{-1}$ 이다.)

▷ 정답: 9

답:

다른 한 근은 $b = \sqrt{3}i$ 이다

다른 한 근은
$$b - \sqrt{3}i$$
이다.
따라서 두 근의 근과 계수의 관계에서

 $a = (b + \sqrt{3}i)(b - \sqrt{3}i) = b^2 + 3$

 $-6 = (b + \sqrt{3}i) + (b - \sqrt{3}i) = 2b$ b = -3, a = 12

따라서
$$a+b=9$$

15.
$$x^2-2x+3=0$$
의 두 근을 α , β 라고 할 때, $(\alpha^2-2\alpha)(\beta^2-2\beta)$ 의 값을 구하여라.

답:

$$x^2 - 2x + 3 = 0$$
 에서 근과 계수의 관계에 의해
$$\alpha + \beta = 2, \ \alpha\beta = 3$$

$$\begin{vmatrix} (\alpha^2 - 2\alpha)(\beta^2 - 2\beta) \\ = \alpha^2 \beta^2 - 2\alpha^2 \beta - 2\alpha \beta^2 + 4\alpha \beta \\ = (\alpha \beta)^2 - 2\alpha \beta(\alpha + \beta) + 4\alpha \beta \end{vmatrix}$$

 $= 9 - 6 \cdot 2 + 12 = 9$

16. 다음 설명 중 <u>틀린</u> 것을 고르면?

- ① $x^2 + 5x + 1 = 0$ 은 서로 다른 두 실근 을 가진다.
- ② $x^2 + 5 = 0$ 는 두 허근을 가진다.
- ③ m = 0 또는 4일 때, $x^2 mx + m = 0$ 은 중근을 가진다.
- ④ $k \ge 1$ 일 때 $x^2 2x + 2 k = 0$ 은 서로 다른 두 실근을 가진다
- ⑤ $x^2 6x + a = 0$ 은 a = 9 일 때만 중근을 가진다.

해설

- ① $25 4 \cdot 1 \cdot 1 = 21 > 0$
- $\bigcirc 0^2 4 \cdot 1 \cdot 1 = -4 < 0$
- $(3)(-m)^2 4 \cdot 1 \cdot m = m(m-4) = 0$
- $\Rightarrow (4)(-1)^2 1 \cdot (2 k) = k 1 > 0 : k > 1$

17. x에 대한 이차방정식 $ax^2 + bx + c = 0$ 이 서로 다른 두 실근을 가질 때, 다음 [보기]의 이차방정식 중 서로 다른 두 실근을 갖는 것을 모두 고른 것은?

$$ax^2 + bx + c = 0$$
이 서로 다른 두 실근을 가지므로 $D = b^2 - 4ac > 0 \cdots$ ① $ax^2 + 2bx + c = 0$ 의 판별식은

해설

$$D = (2b)^2 - 4ac = 4b^2 - 4ac$$
$$= 3b^2 + (b^2 - 4ac > 0)$$

따라서 서로 다른 두 실근을 갖는다.

① [반례] a = 1, b = 3, c = 2일 때 $x^2 + 3x + 2 = 0$ 은 서로 다른 두 실근을 갖지만 $x^2 + \frac{3}{2}x + 2 = 0$ 은 허근을 갖는다.

ⓒ
$$cx^2 + bx + a = 0$$
의 판별식은 $D = b^2 - 4ac > 0$

따라서 서로 다른 두 실근을 갖는다.

18. 이차방정식 $x^2 - 2kx + 9 = 0$ 의 두 근의 비가 1:3이 되도록 상수 k의 값을 구하면?

①
$$\pm 2\sqrt{2}$$
 ② $\pm 2\sqrt{3}$ ③ $\pm 2\sqrt{5}$ ④ $+2\sqrt{6}$ ⑤ $+2$

한 근을
$$\alpha$$
라 하면 다른 한 근은 3α
 \therefore 두 근의 곱은 $3\alpha^2 = 9$ $\therefore \alpha = \pm \sqrt{3}$
두 근의 합은 $\alpha + 3\alpha = \pm 4\sqrt{3} = 2k$
 $\therefore k = \pm 2\sqrt{3}$

19. 다음 중 인수분해를 바르게 한 것을 고르면?

①
$$x^2 + 4x + 1 = (x - 2 - \sqrt{3})(x + 2 - \sqrt{3})$$

②
$$x^2 - 2x + 5 = (x - 1 + 2i)(x + 1 + 2i)$$

3
$$x^2 + 4 = (x + \sqrt{2}i)(x - \sqrt{2}i)$$

$$(3) 2x^2 + 4x - 5 = \left(x - \frac{-2 + \sqrt{14}}{2}\right) \left(x - \frac{-2 - \sqrt{14}}{2}\right)$$

$$(3)3x^2 - 6x + 1 = 3\left(x - \frac{3 + \sqrt{6}}{3}\right)\left(x - \frac{3 - \sqrt{6}}{3}\right)$$

근의 공식을 통해 나온 해를 바탕으로 인수분해 한다

①
$$x^2 + 4x + 1 = (x + 2 - \sqrt{3})(x + 2 + \sqrt{3})$$

②
$$x^2 - 2x + 5 = (x - 1 - \sqrt{6})(x - 1 + \sqrt{6})$$

$$3x^2 + 4 = (x+2i)(x-2i)$$

$$(4) 2x^2 + 4x - 5$$

$$= 2\left(x - \frac{-2 + \sqrt{14}}{2}\right)\left(x - \frac{-2 - \sqrt{14}}{2}\right)$$

$$3x^2 - 6x + 1$$

$$=3\left(x-\frac{3+\sqrt{6}}{3}\right)\left(x-\frac{3-\sqrt{6}}{3}\right)$$

20. 이차함수 $y = x^2 - ax + 1$ 의 그래프가 x 축과 서로 다른 두 점에서 만날 때, 실수 a 의 값의 범위는?

①
$$a < -1$$
 또는 $a > 1$

$$\bigcirc$$
 1 < a < -1

$$\bigcirc 4 -2 < a < 2$$

⑤
$$a = -1$$
 또는 $a = 1$

이차함수 $y = x^2 - ax + 1$ 의 그래프가 x 축과 서로 다른 두 점에서 만나므로 이차방정식 $x^2 - ax + 1 = 0$ 에서

판별식의 값은 양이다.

21. 이차함수 $y = x^2 + ax + 3$ 의 그래프와 직선 y = x + 3a가 만나지 않도록 하는 실수 a의 값의 범위는?

①
$$-12 < a < 1$$
 ② $-12 < a < 2$ ③ $-11 < a < 1$

해설
이차함수
$$y = x^2 + ax + 3$$
의 그래프와
직선 $y = x + 3a$ 는 서로 만나지 않으므로
이차방정식 $x^2 + ax + 3 = x + 3a$,
즉 $x^2 + (a-1)x + 3 - 3a = 0$ 에서
 $D = (a-1)^2 - 4(3-3a) < 0$
 $a^2 + 10a - 11 < 0$, $(a+11)(a-1) < 0$
 $\therefore -11 < a < 1$

22. 이차방정식
$$f(x) = 0$$
의 두 근의 합이 3 일 때, 방정식 $f(2x+1) = 0$ 의 두 근의 합을 구하면?

①
$$\frac{1}{2}$$
 ② 2 ③ $\frac{1}{3}$ ④ 3 ⑤ $\frac{1}{4}$

해설 이차방정식
$$f(x) = 0$$
의 두 근을 α , β 라 할 때, $\alpha + \beta = 3$ 한편, $f(2x+1) = 0$ 의 두 근은 $2x+1 = \alpha$, $2x+1 = \beta$ 즉, $x = \frac{\alpha-1}{2}$, $\frac{\beta-1}{2}$ 이다.
$$\frac{\alpha-1}{2} + \frac{\beta-1}{2} = \frac{\alpha+\beta-2}{2} = \frac{3-2}{2} = \frac{1}{2}$$

$$f(x) = 0 의 두 근을 α, β 라 할 때, $\alpha + \beta = 3$

$$f(x) = k(x - \alpha)(x - \beta)$$
라 하면
$$f(2x + 1) = k(2x + 1 - \alpha)(2x + 1 - \beta)$$

$$f(2x + 1) = 0 의 두 근은 $x = \frac{\alpha - 1}{2}, \frac{\beta - 1}{2}$

$$\therefore \frac{\alpha - 1}{2} + \frac{\beta - 1}{2} = \frac{\alpha + \beta - 2}{2} = \frac{3 - 2}{2} = \frac{1}{2}$$$$$$