
- 1. 한 원 또는 합동인 원에 대한 설명으로 옳은 것은?
  - ① 다른 크기의 중심각에 대한 현의 길이는 같다. ② 다른 크기의 중심각에 대한 호의 길이는 같다.
  - ③ 현의 길이는 중심각의 크기에 정비례하지 않는다.
  - ④ 호의 길이는 중심각의 크기에 정비례하지 않는다.
  - ⑤ 부채꼴의 넓이는 중심각의 크기에 정비례하지 않는다.

#### ① x : 다른 크기의 중심각에 대한 현의 길이는 다르다.

해설

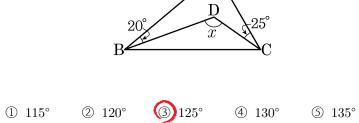
- ② x : 다른 크기의 중심각에 대한 호의 길이는 다르다. ③ ○ : 현의 길이는 중심각의 크기에 정비례하지 않는다.
- ④ x : 호의 길이는 중심각의 크기에 정비례한다.
- ⑤ x : 부채꼴의 넓이는 중심각의 크기에 정비례한다.

2. 다음 그림과 같이 ABC 에서 ∠A 와 ∠C 의 외각의 이등분선의 교점을 D 라고 할 때, ∠ADC 의 크기를 구하여라.



➢ 정답: 59°

 $\angle BAC + \angle BCA = 180^{\circ} - 62^{\circ} = 118^{\circ}$ 


▶ 답:

해설

 $\angle EAC + \angle FCA = 360^{\circ} - 118^{\circ} = 242^{\circ}$   $\angle DAC + \angle DCA = 242^{\circ} \times \frac{1}{2} = 121^{\circ}$   $\therefore \angle ADC = 180^{\circ} - 121^{\circ} = 59^{\circ}$ 

# **3.** 다음 그림에서 $\angle x$ 의 크기는?

해설



 $80^{\circ} + 20^{\circ} + \angle DBC + 25^{\circ} + \angle DCB = 180^{\circ}$  이므로  $\angle DBC + \angle DCB = 55^{\circ}$  $\therefore \angle x = 180^{\circ} - 55^{\circ} = 125^{\circ}$  4. 모서리의 개수가 30 개인 각뿔대의 면의 개수를 구하여라.

<u>개</u>

▷ 정답: 12 개

해설

n 각뿔대의 모서리의 개수는 3n 이므로 3n = 30  $\therefore n = 10$ 

따라서 십각뿔대의 면의 개수는 ∴ 10 + 2 = 12(개)

, ,

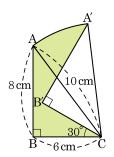
5. 다음 보기 중에서 모서리의 개수가 6개인 다면체를 골라라

보기 ⓒ 오각뿔대 ↑ 사각기둥□ 사각뿔대 ◎ 오각기둥 ② 삼각뿔

▶ 답: ▷ 정답: ②

모서리의 개수는 n 각기둥이 3n , n 각뿔은 2n , n 각뿔대는 3n

이다. 따라서 

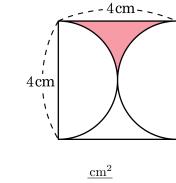

(a).  $3 \times 4 = 12(7)$ 

©.  $3 \times 5 = 15(7 \%)$ ⓐ.  $2 \times 3 = 6(71)$ 

@.  $3 \times 5 = 15(개)$  이다.

모서리의 개수가 6개인 것은@이다.

 $\overline{AB} = 8 \text{cm}, \ \overline{BC} = 6 \text{cm}, \overline{CA} = 10 \text{cm}, \angle B = 90^{\circ}$ **6.** 인 직각삼각형 ABC 가 있다. 다음 그림과 같이  $\triangle ABC$  를 점 C 를 중심으로 하여 시계 방향으 로30° 회전 이동한 도형을 ΔΑ′Β′C 라고 할 때, 색칠한 부분의 넓이는?




- ①  $\frac{20}{3}\pi \, \text{cm}^2$  ②  $\frac{25}{3}\pi \, \text{cm}^2$  ③  $\frac{50}{3}\pi \, \text{cm}^2$  ④  $\frac{75}{3}\pi \, \text{cm}^2$  ⑤  $\frac{100}{3}\pi \, \text{cm}^2$

색칠한 부분의 넓이는 (부채꼴 A'CA의 넓이)+( $\triangle$ ABC의 넓이)-( $\triangle$ A'B'C의 넓이)

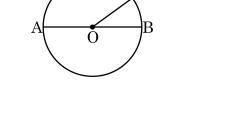
=(부채꼴 A'CA의 넓이)  $\therefore \pi \times 10^2 \times \frac{30^{\circ}}{360}^{\circ} = \frac{25}{3}\pi (\text{cm}^2)$ 

7. 다음 그림과 같이 한 변의 길이가 4 cm 인 정사각형 안에 지름의 길이가 4 cm 인 두 개의 반원이 내접하고 있다. 색칠한 부분의 넓이를 구하여라.



▷ 정답: 8 - 2π <u>cm²</u>

변의 길이가  $4 \, \mathrm{cm}, \, 2 \, \mathrm{cm}$  인 직사각형에서 지름이  $4 \, \mathrm{cm}$  인 반원의


▶ 답:

넓이를 뺀다.  $\therefore 4 \times 2 - \pi \times 2^2 \times \frac{1}{2} = 8 - 2\pi \text{ (cm}^2\text{)}$ 

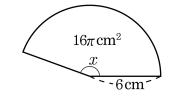
- 중심각의 크기가  $60^\circ$  이고, 호의 길이가  $12\pi\mathrm{cm}$  인 부채꼴의 넓이는? 8.
  - ①  $144\pi \text{cm}^2$
- $2 189\pi \text{cm}^2$
- $3216\pi \text{cm}^2$
- (4)  $240\pi \text{cm}^2$  (5)  $432\pi \text{cm}^2$

 $2\pi r \times \frac{60^{\circ}}{360^{\circ}} = 12\pi$   $\therefore r = 36$ 따라서  $S = \frac{1}{2}rl = \frac{1}{2} \times 36 \times 12\pi = 216\pi(\text{cm}^2)$  이다.

다음 그림에서  $5.0 \mathrm{pt} \widehat{\mathrm{AC}} = 45.0 \mathrm{pt} \widehat{\mathrm{BC}}$  일 때,  $\angle \mathrm{BOC}$  의 크기를 구하여라. 9.

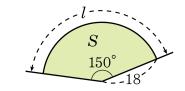


① 15° ② 20°


③ 30°

**4**36°

⑤ 45°

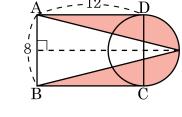

 $\angle BOC = 180^{\circ} \times \frac{1}{5} = 36^{\circ}$ 

10. 다음 그림과 같이 반지름의 길이가 6 cm 이고, 넓이가  $16 \pi \text{cm}^2$  인 부채꼴의 중심각의 크기는?



① 120° ② 130° ③ 140° ④ 150° ⑤ 160°

(부채꼴의 넓이) = (원의 넓이) ×  $\frac{(중심각의 크기)}{360^{\circ}}$  $16\pi = \pi \times 36 \times \frac{x}{360^{\circ}} = \frac{x}{10}\pi$  $\therefore x = 160^{\circ}$  11. 다음 그림과 같은 부채꼴에서 호의 길이 l 과 넓이 S 는?



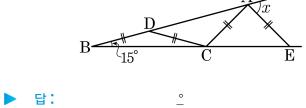

- $l = 10\pi, S = 90\pi$
- $l = 15\pi, S = 90\pi$
- $l = 10\pi, S = 135\pi$  $l = 25\pi, S = 135\pi$
- $4l = 15\pi, S = 135\pi$

$$l = 2\pi \times 18 \times \frac{150^{\circ}}{360^{\circ}} = 15\pi$$

$$S = \pi \times 18^2 \times \frac{150^{\circ}}{360^{\circ}} = 135\pi$$

12. 다음 그림은 직사각형 ABCD 와  $\overline{\text{CD}}$  를 지름으로 하는 반원을 붙여 놓은 것이다. 이 때, 색칠한 부분의 넓이는?




- ①  $8\pi + 32$  ②  $7\pi + 32$  $97\pi + 32$ 
  - ⑤  $8\pi + 31$
- $38\pi + 30$

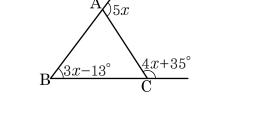
#### (□ABCD의 넓이) = 96

(반원의 넓이) =  $\frac{1}{2} \times \pi \times 4^2 = 8\pi$ 

 $\therefore$  (구하는 넓이) =  $96 + 8\pi - \frac{1}{2} \times 8 \times 16 = 8\pi + 32$ 

13. 다음 그림에서  $\overline{\mathrm{DB}}=\overline{\mathrm{DC}}=\overline{\mathrm{AC}}=\overline{\mathrm{AE}}$  일 때, x 의 값을 구하여라.




➢ 정답: 60 º

해설

 $\angle DCB = \angle DBC = 15^{\circ}$  $\angle ADC = \angle DAC = 15^{\circ} + 15^{\circ} = 30^{\circ}$ 

 $\angle ACE = \angle AEC = 30^{\circ} + 15^{\circ} = 45^{\circ}$  $\therefore \angle x = \angle DBC + \angle AEC = 15^{\circ} + 45^{\circ} = 60^{\circ}$ 

# **14.** 다음 그림에서 $\angle x$ 의 크기는?



①  $20^{\circ}$ 

② 22°

③  $24^{\circ}$  ④  $26^{\circ}$ 

⑤ 28°

 $5x = 3x - 13^{\circ} + 180^{\circ} - (4x + 35^{\circ})$ 

 $5x = 132^{\circ} - x$ 

 $\therefore$   $\angle x = 22^{\circ}$ 

- **15.** 꼭짓점의 개수가 20 개, 모서리의 개수가 30 개인 각기둥은?
  - ④ 십각기둥 ⑤ 십이각기둥
- - ① 칠각기둥 ② 팔각기둥 ③ 구각기둥

# 해설

꼭짓점의 개수 v = 20모서리의 개수 e = 30 이므로

이 다면체의 면의 개수 f 는

20 - 30 + f = 2

따라서 f=12 이므로 이 다면체는 십이면체이고, n 각기둥은 (n+2) 면체이므로

이 각기둥은 십각기둥이다.

16. 다음 표는 정다면체에 대하여 꼭짓점의 개수, 모서리의 개수, 면의 모양을 조사하여 나타낸 것이다. 안에 알맞은 것을 차례대로 써 넣어라.

| <br>정다면체 | 정사면체 | 정육면체 | 정팔면체 | 정십이면체 | 정이십면체 |
|----------|------|------|------|-------|-------|
| 꼭짓점의 개수  | 4    | Э    | Ū    | 20    | 12    |
| 모서리의 개수  | Œ    | 12   | 12   | 2     | 30    |
| 면의 모양    | 정삼각형 | 정사각형 | ⅎ    | 정오각형  | H     |
|          |      |      |      |       |       |

■ 답:

▶ 답:

· 답:

\_

답:

답:답:

▷ 정답: 8

> 정답: 6> 정답: 6

▷ 정답: 30

▷ 정답: 정삼각형

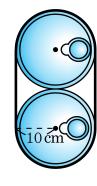
▷ 정답: 정삼각형

- 17. 모서리의 개수가 30 개이고, 꼭짓점의 개수가 12 개인 정다면체는?
  - ④ 정십이면체 ⑤ 정이십면체
- - ① 정사면체
     ② 정육면체
     ③ 정팔면체

해설

12 - 30 + f = 2f = 20

따라서 정이십면체이다.


 $oldsymbol{18}$ . 면의 개수가 20 인 각뿔대의 꼭짓점의 개수를 a , 모서리의 개수를 b라 할 때, *b* - *a* 의 값은?

- ① 15 ② 16 ③ 17 ④ 18
- ⑤ 19

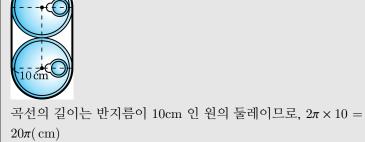
해설 각뿔대의 면의 개수는 n+2 이므로 n+2=20, n=18 이다.

따라서 십팔각뿔대 이므로 꼭짓점의 개수는 36 , 모서리의 개수는 54 이다. b - a = 54 - 36 = 18

19. 다음 그림과 같이 반지름의 길이가 10cm 인 깡통을 끈으로 묶을 때, 필요한 끈의 최소 길이는? (단, 매듭의 길이는 생각하지 않는다.)

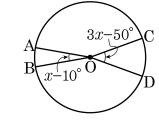


(30 + 20 $\pi$ )cm


①  $(13 + 20\pi)$ cm

- $(40 + 20\pi)$ cm

②  $(15 + 20\pi)$ cm ③  $(18 + 20\pi)$ cm


다음 그림과 같이 선을 그으면,

해설



직선의 길이는  $2 \times 10 \times 2 = 40 (\, \mathrm{cm}),$ 필요한 끈의 길이는  $(20\pi + 40) \, \mathrm{cm}$  이다.

 ${f 20}.~~$  다음 그림의 원 O 에서 부채꼴 AOB 의 넓이가  $24{
m cm}^2$  이고 부채꼴  ${
m COD}$  의 넓이가  $48{
m cm}^2$  일 때, x 의 값을 구하여라.



➢ 정답: 30°

▶ 답:

부채꼴의 넓이는 중심각의 크기에 정비례하므로,

해설

 $24:48 = (x - 10^{\circ}): (3x - 50^{\circ})$  $2x - 20^\circ = 3x - 50^\circ$ 

 $\therefore x = 30^{\circ}$ 

21. 십이각형에서 내각의 크기의 합과 외각의 크기의 합을 차례대로 구하 여라.

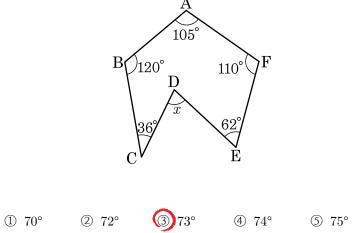
▶ 답:

▶ 답: ▷ 정답: 1800°

▷ 정답: 360°

내각의 크기의 합:180°×(n-2) = 180°×(12-2) = 1800°

해설


다각형이므로 외각의 크기의 합은 360°이다.

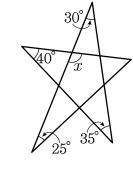
**22.** 내각의 크기의 합이 2340° 인 정다각형의 한 외각의 크기는?

① 22.5° ② 24° ③ 30° ④ 36° ⑤ 45°

180°(n - 2) = 2340° ∴ n = 15 따라서 한 외각의 크기는  $\frac{360^\circ}{15}$  = 24° 이다.

#### **23.** 다음 그림에서 $\angle x$ 의 크기는?




선분CE 를 연결하면 오각형 ABCEF 의 내각의 합은  $180^{\circ} \times (5-2) = 540^{\circ}$ 

540° = 105° + 120° + 36° + ∠DCE + ∠DEC + 62° + 110° ∠DCE + ∠DEC = 107° △DCE 에서

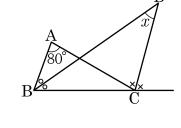
 $\angle x = 180^{\circ} - 107^{\circ} = 73^{\circ}$  이다

∴ 73°

# **24.** 다음 그림에서 $\angle x$ 의 크기를 구하여라.



▷ 정답: 105°

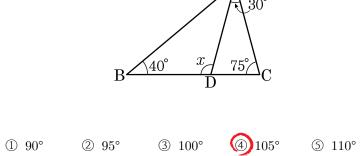

답:

다음 그림과 같이 ∠a 를 잡으면 30°Å

40 a 40 x 25° 35 삼각형의 한 외각의 크기는

그와 이웃하지 않는 두 내각의 크기의 합과 같으므로  $\angle a = 40^\circ + 35^\circ = 75^\circ$   $\angle x = \angle a + 30^\circ = 105^\circ$  이다.

**25.**  $\triangle$ ABC 에서  $\angle$ B 의 이등분선과  $\angle$ C 의 외각의 이등분선의 교점을 D 라 할 때,  $\angle$ A =  $80^\circ$  이면 x 의 값을 구하여라.




▷ 정답: 40°

▶ 답:

 $\angle A+\angle B=2(\angle x+\angle DBC)$  인데  $\angle B=2\angle DBC$  이므로  $\angle A=2\angle x$   $\therefore$   $\angle x=40\,^\circ$ 

### **26.** 다음 그림에서 $\angle x$ 의 크기는?



ΔACD 에서 삼각형의 내각의 크기의 합은 180° 이므로 ∠ADC =

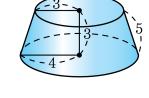
해설

 $75^{\circ}$   $\angle x = 180^{\circ} - 75^{\circ} = 105^{\circ}$ 

# **27.** 다음 그림에서 $\angle x$ 의 크기를 구하면?

- ① 30°
- ③ 45°




맞꼭지각의 크기가 같고,

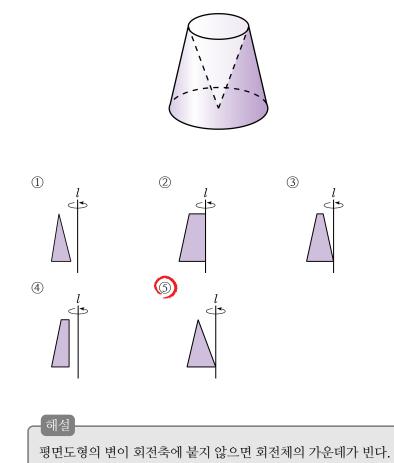
두 삼각형의 세 내각의 크기의 합은 180°이므로

 $45^{\circ} + \angle x = 30^{\circ} + 50^{\circ}$ 

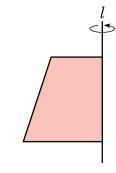
 $\therefore \angle x = 35^{\circ}$ 

28. 다음 그림과 같은 회전체를 회전축을 포함하는 평면으로 자른 단면의 넓이를 구하여라.




답:▷ 정답: 21

해설

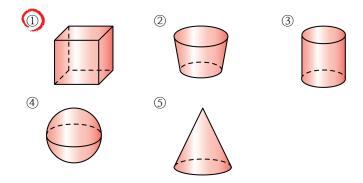

단면은 윗변이 6, 밑변이 8, 높이가 3 인 사다리꼴이므로 S=

 $\frac{1}{2} \times (6+8) \times 3 = 21$ 이다.

. 다음 그림과 같은 회전체는 다음 중 어느 도형을 회전시킨 것인가?



30. 다음 그림에서 직선 l을 회전축으로 하여 1 회전시킬 때 생기는 입체 도형은?




- ① 구
  - ② 사각기둥 ④ 사각뿔대⑤ 원뿔
- ③ 원뿔대

사다리꼴을 회전시키면 윗변, 아랫변의 길이가 다르기 때문에

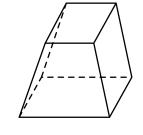
크기가 다른 원기둥이 생긴다. 따라서 두 밑면의 모양이 원으로 같고 평행하며 크기가 다르면 원뿔대이다.

### **31.** 다음 중 회전체가 <u>아닌</u> 것은?



#### 회전체는 한 직선을 축으로 평면도형을 한 바퀴 회전시킬 때

생기는 입체도형이다. 따라서 회전체가 아닌 것은 ①이다.


- 32. 다음 중 면의 모양이 서로 같은 정다면체를 모두 고르면?
  - 정사면체 ② 정육면체 ③ 정팔면체 ⑤ 정이십면체 ④ 정십이면체

정사면체, 정팔면체, 정이십면체는 각 면이 모두 정삼각형으로 이루어진 입체도형이다.

- **33.** 다음 오각뿔대에 대한 설명 중에서 옳지 <u>않은</u> 것은?
  - ① 두 밑면은 합동이다.
  - ② 칠면체이다.
  - ③ 옆면은 사다리꼴이다.
  - ④ 두 밑면은 서로 평행하다.
  - ⑤ 밑면에 평행하게 자른 단면은 오각형이다.

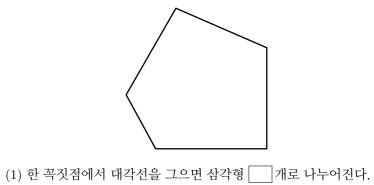
① 두 밑면은 닮음이다.

**34.** 다음 그림과 같은 다면체에서 두 밑면이 평행할 때, 이 다면체의 이름과 옆면의 모양이 바르게 짝지어진 것은?



- ③ 사각기둥 사다리꼴 ④ 사각기둥 사다리꼴
- ① 사각뿔 삼각형 ② 사각기둥 직사각형
- ⑤ 사각뿔대 사다리꼴

다면체의 이름은 사각뿔대이고 옆면의 모양은 각뿔대이므로


사다리꼴이다.

- **35.** n 각뿔, n 각기둥의 면의 개수를 차례로 나열하면?
  - 4 n+2, n+2 5 n+3, n+3
  - ① n-2, n+1 ② n-1, n+1
- 3n+1, n+2

2(개) 이다.

정다면체에서 n 각뿔, n 각기둥의 면의 개수는 각각 n+1(개), n+

**36.** 오각형의 내각의 크기의 합을 구하려고 한다. \_\_\_\_안에 알맞은 것을 차례대로 써 넣어라.



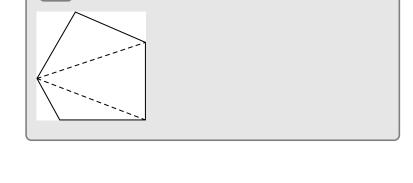
- (2) 삼각형의 내각의 크기의 합은 \_\_\_\_이다.
- (3) 오각형의 내각의 크기의 합은 3개의 삼각형의 내각의 크기의 합과
- 같다. 180°× = \_\_\_\_

▶ 답:

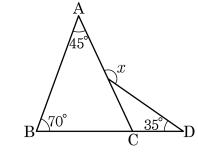
\_\_\_\_

답:

답:


➢ 정답: 3

➢ 정답: 180°


▶ 답:

▷ 정답: 3

➢ 정답: 540°



**37.** 다음 그림에서  $\angle x$  의 크기를 구하여라.



 ► 답:

 ▷ 정답:
 150°

00. 100\_

해설

 $\angle ACD = 45^{\circ} + 70^{\circ} = 115^{\circ}$  $\therefore \angle x = 115^{\circ} + 35^{\circ} = 150^{\circ}$ 

# 38. 다음 중 다면체의 이름과 면의 개수가 올바르게 짝지어진 것은?

- 사각뿔 6개
   삼각뿔 5개
- ② 삼각뿔대 4개
- ⑤ 요구를 5개⑤ 오각뿔 7개
- ④ 오각기둥 7개

#### ① 사각뿔은 밑면이 1개 뿐이므로 면의 개수는 5개이다.

- ② 삼각뿔대의 면의 개수는 5개이다.
- ③ 삼각뿔은 밑면이 1개 뿐이므로 면의 개수가 4개이다.
- ④ 오각기둥은 면의 개수가 7개이다.
- ⑤ 오각뿔은 밑면이 1개 뿐이므로 면의 개수가 6개이다.

**39.** 다음 중에서 오면체인 것의 개수를 a개 , 육면체인 것의 개수를 b개 , 칠면체인 것의 개수를 c개 라 할 때, a+b+c 의 개수를 구하여라.

ⓒ 사각뿔대 ⊙ 삼각뿔대 ○ 사각뿔 ② 오각뿔 ◎ 오각뿔대 📵 오각기둥 △ 육각뿔 ⓒ 구 ☞ 원뿔 🕏 사각기둥 ③ 삼각기둥 € 원기둥 교 육각기둥 🗟 육각뿔대

개 답:

▷ 정답: 9<u>개</u>

⊙ 삼각뿔대 : 오면체

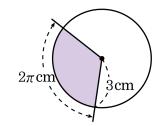
해설

⑥ 사각뿔 : 오면체 ⓒ 사각뿔대: 육면체 ② 오각뿔: 육면체

◎ 오각뿔대 : 칠면체

⊕ 오각기둥 : 칠면체

△ 육각뿔 : 칠면체 ◎ 구 : 다면체가 아니다.

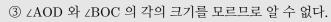

♡ 원뿔: 다면체가 아니다. ◈ 사각기둥 : 육면체

⑤ 삼각기둥 : 오면체 € 원기둥 : 다면체가 아니다.

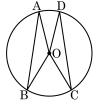
교 육각기둥 : 팔면체 ⑤ 육각뿔대: 팔면체

따라서 a = 3, b = 3, c = 3 이므로 a + b + c = 9 이다.

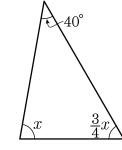
40. 다음 그림의 색칠한 부분의 넓이는?




- ①  $\pi \text{cm}^2$ ④  $6\text{cm}^2$
- $2\pi \text{cm}^2$   $3\pi \text{cm}^2$
- $3 \text{ cm}^2$
- 0 00.


 $S = \frac{1}{2}rl = \frac{1}{2} \times 3 \times 2\pi = 3\pi(\text{cm}^2)$ 

- **41.** 다음 그림의 원 O 에서 ∠AOB = ∠COD 일 때, 다음 중 옳지 <u>않은</u> 것은?


  - $25.0 pt \overrightarrow{AB} = 5.0 pt \overrightarrow{CD}$
  - $\bigcirc 35.0 \text{ptAD} = 5.0 \text{ptBC}$
  - ④ (부채꼴 AOB 의 넓이)=(부채꼴 COD 의 넓이)⑤ △AOB ≡ △COD



⑤ ΔAOB 와 ΔCOD 는 SAS 합동이다.



**42.** 다음 그림에서  $\angle x$ 의 크기를 구하여라.



 답:

 ▷ 정답:
 80°

\_

 $40^{\circ} + x + \frac{3}{4}x = 180^{\circ}$   $\frac{7}{4}x = 140^{\circ}$   $\therefore \ \angle x = 80^{\circ}$