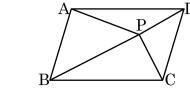
평행사변형 ABCD 의 내부에 한 점 P 를 잡을 때, △PCD, △PAD, △PBC 의 넓이는 각각 10cm², 8cm², 22cm² 이 다.△PAB 의 넓이는?



② 15cm^2

$$\textcircled{4}$$
 20cm² $\tag{5}$ 22cm²

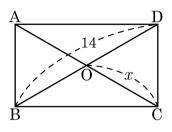
9

 $(3) 18 \text{cm}^2$

$$\Delta PAD + \Delta PBC = \Delta PAB + \Delta PCD$$
$$8 + 22 = \Delta PAB + 10$$
$$\therefore \Delta PAB = 20(cm^{2})$$

① 10cm^2

2. □ABCD 가 직사각형일 때, x 의 길이를 구하여라.



① 5

② 6

3)7

4 8

⑤ 9

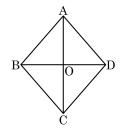
해설

직사각형은 두 대각선의 길이가 같고 이등분하기 때문에 $x = 14 \div 2 = 7$ 이다.

3. 다음 그림의 □ABCD 는 마름모이다. 다음 중 옳지 <u>않은</u> 것은?

- - $\overline{BO} = \overline{DO}$

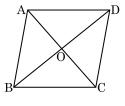
- ⑤ AC⊥BD



- 마름모의 정의
 평행사변형의 성질
- ③ 평행사변형의 성질
- ③ 평행사변형의 성실 ④ 직사각형의 성질
- ⑤ 마름모의 성질

이 되기 위한 조건을 모두 고르면? (정답 2 개)

다음 그림의 평행사변형 ABCD 가 정사각형



- $\overline{\text{AC}} \perp \overline{\text{DB}}$, $\angle \text{ABC} = 90^{\circ}$
- ② $\overline{AO} = \overline{BO}$, $\angle ADO = \angle DAO$
- $\overline{AC} \perp \overline{DB}$, $\overline{AB} = \overline{AD}$
- $\overline{\mathrm{OA}} = \overline{\mathrm{OD}}$, $\overline{\mathrm{AB}} = \overline{\mathrm{AD}}$
- $\overline{AC} = \overline{DB} \cdot \angle ABC = 90^{\circ}$

해설

4.

평행사변형이 정사각형이 되기 위해서는 두 대각선이 서로 수직 이등분하고 한 내각의 크기가 90°이다.

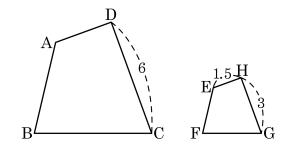
또한 네 변의 길이가 같고. 네 내각의 크기가 같으면 정사각형 이다.

- 5. 다음 중 도형의 성질에 대한 설명으로 바른 것을 모두 고르면?
 - ① 직사각형의 두 대각선은 서로 직교한다.
 - ② 대각선의 길이가 같은 사각형은 정사각형, 직사각형, 등변사다리꼴이다.
 - ③ 대각선이 서로 직교하는 것은 정사각형, 마름모이다.
 - ④ 네 각의 크기가 같은 사각형은 정사각형, 직사각형, 마름모이다.
 - ⑤ 네 변의 길이가 같은 사각형은 정사각형, 마름모이다.

- 해설

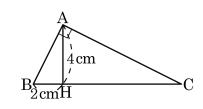
- ① 직사각형의 두 대각선의 길이는 같다.
- ④ 네 각의 크기가 같은 사각형은 정사각형, 직사각형이다.

6. 다음 그림에서 □ABCD ♡□EFGH 일 때, □ABCD 와 □EFGH 의 닮음비를 구하면?



 $\overline{DC}: \overline{HG} = 6: 3 = 2: 1$

7. $\angle A$ 가 직각인 $\triangle ABC$ 에서 $\overline{AH} \bot \overline{BC}$ 일 때, $\triangle AHC$ 의 넓이를 구하면?



답: <u>cm²</u>

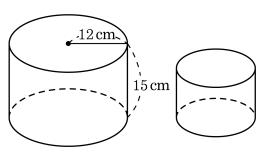
▷ 정답: 16<u>cm²</u>

 $\overline{AH^2} = \overline{BH} \cdot \overline{CH}$

 $16 = 2 \times \overline{\text{CH}}, \overline{\text{CH}} = 8(\text{cm})$

 \therefore (\triangle AHC 의 넓이)= $\frac{1}{2} \times 8 \times 4 = 16 (cm^2)$

8. 다음 그림에서 작은 원기둥은 큰 원기둥을 $\frac{2}{3}$ 로 축소한 것이다. 작은 원기둥의 옆면의 넓이를 구하여라.



 cm^2

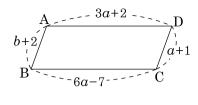
▷ 정답: 160π cm²

답:

해설

작은 원기둥의 밑면의 반지름의 길이를 r, 높이를 h라고 하면 $r=12\times\frac{2}{3}=8(\mathrm{cm})$, $h=15\times\frac{2}{3}=10(\mathrm{cm})$ (옆면의 넓이)= $2\pi rh=2\pi\times8\times10=160\pi(\mathrm{cm}^2)$

9. 다음과 같은 사각형 ABCD가 평 행사변형이 되도록 하는 a, b의 합 a+b의 값을 구하여라.



평행사변형이 되려면
$$\overline{AD} = \overline{BC}$$
이어야 하므로

$$3a + 2 = 6a - 7$$
$$3a = 9$$

$$3a = 9$$

 $\therefore a = 3$

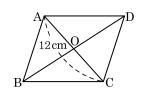
또한,
$$\overline{AB} = \overline{DC}$$
이어야 하므로 $b+2=a+1$

$$\therefore b=2$$

b + 2 = 4

$$\therefore a+b=5$$

10. 평행사변형 ABCD의 대각선의 교점은 O이고, 대각선 \overline{AC} 의 길이는 12cm이다. $\angle B = \angle A$ 일 때, \overline{OB} 의 길이를 구하여라.



- ▶ 답:
- ▷ 정답: 6 cm

해설

평행사변형에서 $\angle A = \angle B$, $\angle A + \angle B = 180^\circ$, $\angle A = \angle B = 90^\circ$ 이므로, 평행사변형 ABCD 는 직사각형이다. 직사각형은 대각선의 길이가 같고 서로 다른 것을 이등분한다.

cm

따라서 $\overline{AC} = \overline{BD} = 12$ cm, $\overline{OB} = \frac{\overline{BD}}{2} = \frac{12}{2} = 6$ cm 이다.

11. 다음 보기 중 두 대각선의 길이가 항상 같은 것은 모두 몇 개인가?

보기

사각형, 사다리꼴, 등변사다리꼴, 평행사변형, 직사각형, 마름모, 정사각형

해설

 ① 1 개
 ② 2 개
 ③ 3 개
 ④ 4 개
 ⑤ 5 개

등변사다리꼴, 직사각형, 정사각형 3개이다.

12. 평행사변형 ABCD 가 다음 조건을 만족할 때, 어떤 사각형이 되는지 말하여라.

-조건2 : AC 와 BD 는 직교한다.

▶ 답:

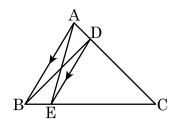
▷ 정답: 정사각형

조건1: ∠A = 90°

해설

조건 1에서 평행사변형의 한 각이 90° 이므로 다른 각도 모두 90° 가 된다. 이 경우 직사각형이 된다.

조건 2 에서 두 대각선이 직교하므로 마름모가 된다. 이 조건을 모두 만족하는 도형은 정사각형이다. 13. 다음 그림과 같은 \triangle ABC에서 \overline{AB} // \overline{DE} 이고, \triangle ABC = 30, \triangle DBC = 24일 때, \triangle ABE의 넓이를 구하여라.



답:

▷ 정답: 6

해설

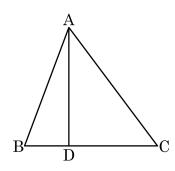
 \overline{AB} $/\!/ \overline{DE}$ 이므로 $\triangle DBE$ 와 $\triangle AED$ 밑변과 높이가 같다. 따라서 $\triangle DBE = \triangle AED$ 이다.

 $\triangle AEC = \triangle DEC + \triangle AED = \triangle DEC + \triangle DBE$

 $= \triangle DBC = 24$

 $\therefore \triangle ABE = \triangle ABC - \triangle AEC = 30 - 24 = 6$

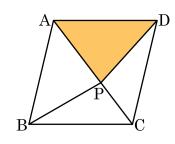
14. 다음 그림에서 \overline{BD} : $\overline{CD}=1$: 2, $\triangle ABC=9$ 일 때, $\triangle ABD$ 의 넓이를 구하여라.



해설

$$\triangle ABD = 9 \times \frac{1}{1+2} = 3$$

15. 다음 그림의 평행사변형 ABCD에서 대각선 AC 위의 점 P에 AP:
 PC = 3:2이고, □ABCD = 100cm²일 때, △PAD의 넓이를 구하여라. (단, 단위는 생략한다.)



▶ 답:

➢ 정답: 30

해설

 $\triangle APD + \triangle PCD = 50(cm^2)$ $\overline{AP} : \overline{PC} = 3 : 2$ 이므로

 $\triangle PAD = 50 \times \frac{3}{5} = 30 (cm^2)$

16. 다음 그림과 같은 부채꼴에서 5.0ptAB 와 5.0ptCD 의 길이의 비와 부채꼴 AOB, COD 의 닮음비를 구한 것으로 옳은 것은?.

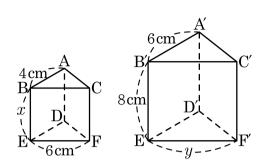
- ① 3:5,3:8 ② 3:7,5:7
- ③ 4:7,3:8 ④ 3:7,3:7
- $\bigcirc 5:7,3:7$

길이비는 닮음비와 같으므로 5.0pt $\overrightarrow{AB}:5.0$ pt $\overrightarrow{CD}=\overline{OB}:\overline{OD}=12:28=3:7$

 $16 \, \mathrm{cm}$

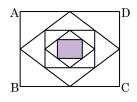
 $2 \, \mathrm{cm}$

17. 다음 두 삼각기둥이 서로 닮은 도형이고 △ABC 와 △A'B'C' 가 대응하는 면일 때, 다음 중 옳지 않은 것을 모두 골라라.



- ¬ △ABC ∽△A′B′C′
- $\ \ \, \boxdot{AB}:\overline{A'B'}=3:4$
- \bigcirc y = 8(cm)
- ② 닮음비는 2:3이다.
- ▶ 답:
- ▶ 답:
- ▷ 정답: □
- ▷ 정답 : □
 - 해설
- © AB: A'B' = 2:3 이다.
 - © 2:3=6:y, y=9이다.

18. 다음 그림은 직사각형 ABCD 를 시작으로 계속하여 각 변의 중점을 연결한 도형이다. 색칠된 부분의 넓이가 10 일 때, □ABCD 의 넓이를 구하여라.

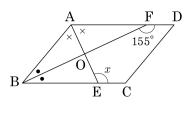


이므로 $\square ABCD$ 의 넓이를 x 라 하면 $x \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 10$

각 변의 중점을 연결하여 만든 도형의 넓이는 처음 도형의 $\frac{1}{2}$

$$\therefore x = 160$$

19. 다음 그림과 같은 평행사변형 ABCD에서 /A. /B의 이등분선의 교점을 O라 하자 ∠BFD = 155° 일 때. $\angle x$ 의 크기를 구하여라.



해설 AE 에 의하여 이등분되는

 $\angle A$ 를 $\angle DAE = \angle BAE = a$ 라 하고 BF에 의하여 이등분되는

∠B를 ∠ABF = ∠EBF = b라 하면 평행사변형에서 이웃하는 각의 크기의 합이 180°이므로

$$2a + 2b = 180^{\circ}$$
$$a + b = 90^{\circ}$$

$$\angle {
m AFB}=180\,^{\circ}$$
 – $155\,^{\circ}=25\,^{\circ}$ 이고 $\overline{
m AD}\,/\!/\,\overline{
m BC}$ 이므로 엇각의 성질에 의하여 $b=25\,^{\circ}$

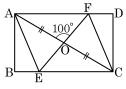
△ABE에서 두 내각의 합은 이웃하지 않은 외각의 크기와 같으

$$a+b=90$$
 °이므로 $a+25$ ° $=90$ °

$$a+b=90 \quad \text{one } a+25=90$$

$$\therefore a=65^{\circ}$$

므로 $a + 2b = \angle x$ $\therefore \ /x = 65^{\circ} + 50^{\circ} = 115^{\circ}$ 20. 다음 그림에서 직사각형 ABCD 의 대각선 \overline{AC} 의 이등분선이 \overline{BC} , \overline{AD} 와 만나는 점을 각각 E, F 라고 할 때, 다음 보기에서 옳지 않은 것을 모두 골라라.



 \bigcirc $\overline{AF} = \overline{CF}$ \bigcirc $\angle FAO = \angle EAO$

 \bigcirc $\overline{AF} = \overline{CE}$ \bigcirc $\overline{AE} = \overline{AO}$

 \Box $\angle FOC = \angle EOA$ \bigcirc $\triangle FAO \equiv \triangle ECO$

- 답:

▶ 답:

▶ 답:

▷ 정답: ⑤

▷ 정답: □

▷ 정답: ②

해설

 $\triangle AFO$ 와 $\triangle OEC$ 에서, $\overline{OA} = \overline{OC}$, $\angle AOF = \angle EOC$, $\angle OAF = \angle OAF$ ∠OCE 이므로 ASA 합동이다.

그러므로 $\overline{OE} = \overline{OF}$ 이다.

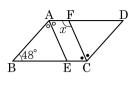
또. □AECF 의 두 대각선은 다른 대각선을 이등분하므로 □AECF

는 평행사변형이다. ①. 평행사변형에서 항상 ∠FAO = ∠EAO 는 아니다.

(C). $\overline{AF} = \overline{EC}$, $\overline{AE} = \overline{FC}$ 이지만 항상 $\overline{AF} = \overline{CF}$ 는 아니다.

②. 평행사변형에서 $\overline{AE} = \overline{AO}$ 는 성립할 필요 없다.

21. 다음 그림과 같은 평행사변형 ABCD에서 ĀE, Œ가 각각 ∠A, ∠C의 이등분선일 때, ∠x의 크기를 구하여라.



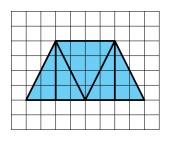
해설

∴ ∠EAF = ∠BAE =
$$\frac{1}{2} \times 132$$
° = 66 °
이때, □AECF 는 평행사변형이므로

$$66^{\circ} + \angle x = 180^{\circ}$$

 $\therefore \angle x = 114^{\circ}$

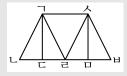
22. 다음 그림에서 평행사변형을 모두 몇 개나 찾을 수 있는가?



- ① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

해설

위의 그림을 다음과 같이 기호를 붙여보자.

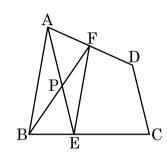


평행사변형이 되는 사각형은 ㅁㄱㄴㄹㅇ, ㅁㄱㄹㅂㅇ, ㅁㄱㄷㅁㅇ 즉 3 개이다. 23. 다음 그림과 같이 $\overline{AB}=3\mathrm{cm},\ \overline{AD}=4\mathrm{cm}$ 인 평행사변형 ABCD에 서 $\angle A$ 의 이등분선과 \overline{BC} 와의 교점을 E라 할 때, x의 길이는? (단, $\angle B=\frac{1}{2}\angle A$)

2 3 ΔABE는 이등변삼각형이고 ∠B = 60°이므로 정삼각형이다.

$$\therefore x = \overline{AE} = 3cm$$

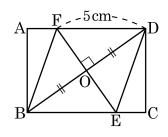
24. 다음 그림과 같은 사각형 ABCD에서 $\overline{AB}//\overline{FE}$ 일 때, 넓이가 같은 삼각형은 모두 몇 쌍 있는가?



④ 4쌍

⑤ 5쌍

 $\triangle ABE = \triangle ABF, \ \triangle AEF = \triangle BEF$ $\triangle APF = \triangle PBE$ **25.** 다음 직사각형 ABCD에서 $\overline{BD}\bot\overline{FE}$ 일 때, 사각형 FBED의 둘레의 길이를 구하여라.



① 18 cm ② 20 cm ③ 22 cm ④ 24 cm ⑤ 26 cm

 $\triangle FBO = \triangle FDO(SAS합동) 이므로$

 $\Delta FBO \equiv \Delta FDO(SAS GS) \cap \Box \subseteq \overline{FB} = \overline{FD}$

△FOD ≡ △EOB(ASA합동) 이므로

△FOD ≡ △EOB(ASA압동) 이므로 FD = EB

△BEO ≡ △DEO(SAS합동) 이므로

 $\overline{\mathrm{EB}} = \overline{\mathrm{ED}}$

해설

따라서 $\overline{FB} = \overline{EB} = \overline{ED} = \overline{FD}$ 이므로 $\Box FBED$ 는 마름모이다.

따라서 □FBED의 둘레의 길이는

 $\overline{FB} + \overline{BE} + \overline{ED} + \overline{DF} = 4 \times 5 = 20 \text{ (cm)}$