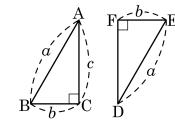
1. 다음 그림과 같은 두 직각삼각형 ABC, DEF 가 합동임을 증명하는 과정이다. (1) ~ (5) 안에 알맞은 것을 보기에서 찾아라.



증명)

△ABC 와 △DEF 에서

∠C = (1) = (2), AB = (3), BC = (4)

∴ △ABC ≡ △DEF ((5) 합동)

	모기	
う ∠F	\bigcirc $\overline{\mathrm{DE}}$	\bigcirc $\overline{\mathrm{DF}}$
⊜ EF	© SAS	(h) RHS
⊗ RHA	© 90°	

ᆸᆞ	

▶ 답: ____

∴ △ABC ≡ △DEF (RHS 합동)

$$A$$
 C
 E
 F

다음은 ΔABC와 ΔDEF가 RHS합동임을 보이려는 과정이다. 보이기

①
$$\angle A = \angle B$$
, $\overline{AB} = \overline{DE}$, $\overline{BC} = \overline{EF}$

△ABC 와 △DEF 에서

위해 필요한 것들로 옳은 것은?

2.

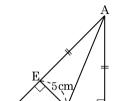
$$\bigcirc$$
 $\angle B = \angle E, \overline{AB} = \overline{DE}, \overline{BC} = \overline{EF}$

$$\bigcirc \exists \angle B = \angle E, \overline{AC} = \overline{DF}, \overline{BC} = \overline{EF}$$

$$\textcircled{4}$$
 $\angle C = \angle F = 90^{\circ}$, $\overline{AB} = \overline{DE}$, $\overline{BC} = \overline{EF}$

$$\bigcirc$$
 $\angle C + \angle F = 360^{\circ}, \overline{AB} = \overline{DE}, \overline{BC} = \overline{EF}$

길이를 구하여라.

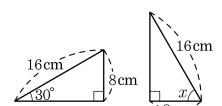


cm

다음 그림과 같이 ∠C = 90° 인 직각삼각형 ABC 에서 $\overline{AE} = \overline{AC}$, $\overline{AB} \perp \overline{DE}$ 일 때, \overline{DC} 의

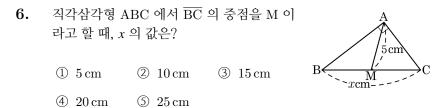
다음 그림과 같이 ∠C = 90° 인 직각삼각형 ABC 에서 $\overline{AE} = \overline{AC}$, $\overline{AB} \perp \overline{DE}$ 일 때, \overline{DC} 의 길이는? ① 3 cm ② 6 cm 3 7 cm 4 8 cm (5) 10 cm

5. 다음 두 직각삼각형의 합동조건을 쓰고 $\angle x$ 의 크기를 구하여라.



>	답:	합동

> 답: °



O 라 하고, ∠DBC = 30°, ∠CAD = 60°일 때, ∠BDC 의 크기는?

평행사변형ABCD 에서 두 대각선의 교점을

8. 평행사변형이 다음 조건을 만족할 때, 어떤 사각형이 되는지 말하여라.

조건2 : 대각선의 길이가 같다.

조건1: 이웃하는 두 변의 길이가 같다.

납:

9.	다음 보기의 도형들 중에	서 조건을 만족하는 도형을 모두 찾아라.
	· 두 대각선이 서로 디 · 두 대각선이 내각을	
		보기
	⊙ 평행사변형	© 직사각형
	© 마름모	② 정사각형
	◎ 등변사다리꼴	
	▶ 답:	

▶ 답:

10.	다음 보기에서 '두 대각선의 길이가 서로 같다.' 는 성질을 갖는 사각
	형을 모두 골라라.
	보기
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

	모기
① 사다리꼴	© 등변사다리꼴
© 직사각형	② 정사각형
◎ 마름모	⊕ 평행사변형

▶ 답:	
◎ 마름모	⊕ 평행사변형
© 직사각형	◎ 정사각형

▶ 답: _____

11. 다음 보기의 사각형 중에서 두 대각선이 서로 다른 것을 수직이등분하는 것은 모두 몇 개인지 구하여라.

보기
© 등변사다리꼴
② 직사각형
⑮ 정사각형

➤ 답: 개

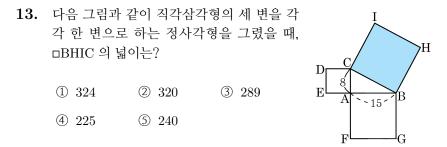
12.	다음 인에 알맞은 수를 각각 써 넣어라.
	직각삼각형의 빗변의 길이를 10 , 다른 두 8 이라 할 때, 다음이 성립한다.

두 변의 길이를 각각 6,

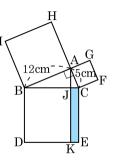
		-
다		

🔰 답:

다	
\sqcup ·	



14. 다음 그림에서 ĀB = 12 cm, ĀC = 5 cm 일 때, □JKEC 의 넓이를 구하여라.

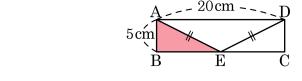


 cm^2

15. 다음 그림의 $\triangle ABC$ 에서 $\overline{AB} = \overline{BC}$, $\overline{BD} \bot \overline{AC}$

① 20° ② 30° ③ 35° ④ 40° ⑤ 45°

16. 다음 그림의 직사각형 ABCD 는 $\overline{AB}=5 \mathrm{cm}, \overline{AD}=20 \mathrm{cm}$ 이다. \overline{BC} 위에 $\overline{AE}=\overline{DE}$ 가 되도록 점 E 를 잡을 때, $\triangle ABE$ 의 넓이는?



① 20cm^2

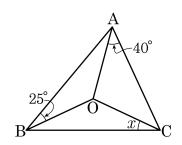
 $35 \,\mathrm{cm}^2$

 0cm^2 ② 25cm^2

 35cm^2

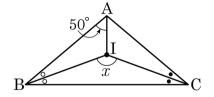
 $30 \mathrm{cm}^2$

17. 다음 그림에서 점 O는 △ABC의 외심이다.∠CAO = 40°, ∠ABO = 25°일 때, ∠BCO의 크기는?



 $(1) 22^{\circ} (2) 35^{\circ} (3) 20^{\circ} (4) 30^{\circ} (5) 25^{\circ}$

18. 다음 그림에서 점 I는 $\angle B$ 와 $\angle C$ 의 내각의 이등분선의 교점이다. $\angle IAB = 50^{\circ}$ 일 때, $\angle x$ 의 크기는?



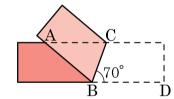
① 120° ② 130° ③ 140° ④ 150° ⑤ 160°

다음 그림에서 평행사변형 ABCD 의 두 대 각선의 교점 O를 지나는 직선이 \overline{AB} . \overline{CD} 와 만나는 점을 P, Q 라고 할 때, 색칠한 부분의 넓이가 12cm² 이면 □ABCD 의 넓이는? $(1) 40 \text{cm}^2$ ② 44cm^2 (3) 48cm^2

 $56 \,\mathrm{cm}^2$

 $52 \,\mathrm{cm}^2$

20. 다음 직사각형 모양의 종이를 \overline{BC} 를 접는 선으로 하여 접었다. $\angle CBD = 70^{\circ}$ 일 때, $\angle BAC$ 의 크기를 구하면?



① 30° ② 35° ③ 40° ④ 45° ⑤ 50°

(가정) $\Box ABCD$ 에서 $\angle A = \angle B = \angle C = \angle D$ (결론) $\overline{AC} = \overline{BD}$ (증명) 직사각형은 평행사변형이므로 $\triangle ABC$ 와 $\triangle DCB$ 에서 $\overline{AB} = \overline{CD}$, $\angle ABC = \angle DCB$ (가정)

따라서, 직사각형의 두 대각선의 길이는 같다.

안에 들어갈 말로 옳은 것은?

BC 는 공통

21. 다음은 '직사각형의 두 대각선은 길이가 같다.' 를 증명하는 과정이다.

① 즉,
$$\triangle ABC \equiv \triangle DCB \text{ (ASA 합동)} 이므로 $\overline{AC} = \overline{AB}$ 이다.$$

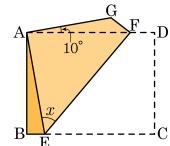
② 즉,
$$\triangle ABC \equiv \triangle DCB$$
 (ASA 합동) 이므로 $\overline{AC} = \overline{AD}$ 이다.

③ 즉,
$$\triangle ABC \equiv \triangle DCB$$
 (SAS 합동) 이므로 $\overline{AC} = \overline{BD}$ 이다.

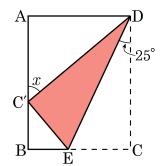
④ 즉,
$$\triangle ABC \equiv \triangle DCB$$
 (SAS 합동) 이므로 $\overline{AC} = \overline{AB}$ 이다.

⑤ 즉,
$$\triangle ABC \equiv \triangle DCB$$
 (SAS 합동) 이므로 $\overline{AC} = \overline{AD}$ 이다.

22. 다음 그림과 같이 직사각형 ABCD 의 꼭짓점 C 가 A 에 오도록 접었다. $\angle GAF = 10^{\circ}$ 일 때, $\angle x$ 의 값을 구하여라.



23. 다음 그림과 같이 직사각형 ABCD 를 ∠EDC = 25° 가 되고 꼭짓점 C 가 변 AB 위에 있도록 접었다. 이 때,∠x 의 크기는?



① 40° ② 45° ③ 50° ④ 55° ⑤ 60°

- **24.** 마름모의 성질인 것은? ① 한 쌍의 대변만 평행하다. ② 한 쌍의 대각의 크기가 다르다. ③ 두 쌍의 대변의 길이가 서로 다르다.
 - ④ 두 쌍의 대각의 크기가 서로 다르다.⑤ 두 대각선이 서로 다른 것을 수직이등분한다.

25. 마름모의 성질이 아닌 것은? ① 두 대각선의 길이가 같다. ② 이웃하는 두 변의 길이가 같다.

③ 대각선에 의해 대각이 이등분된다.

⑤ 대각의 크기가 같다.

④ 두 대각선이 서로 다른 것을 수직이듯분한다

다음 중 두 대각선의 길이가 서로 같고. 서로 다른 것을 이등분하는 사각형을 모두 고르면? ① 등변사다리꽄 ② 평행사변형 ③ 마름모

⑤ 정사각형

④ 직사각형

다음 중 두 대각선의 길이가 서로 같고. 서로 다른 것을 수직이등분하는 사각형은? 정사각형 ② 등변사다리꽄 ③ 직사각형

⑤ 마름모

④ 평행사변형

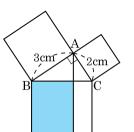
- **28.** 다음 조건에 알맞은 사각형을 모두 구하면? 대각선이 서로 다른 것을 수직이등분한다. ① 마름모, 정사각형 ② 평행사변형, 마름모 ③ 직사각형, 마름모, 정사각형 ④ 등변사다리꼴, 직사각형, 정사각형
 - ⑤ 평행사변형, 등변사다리꼴, 마름모, 정사각형

다음 사각형 중에서 두 대각선의 길이가 같은 사각형이 아닌 것을 모두 고르면? ① 평행사변형 ② 등변사다리꼴 ③ 정사각형

⑤ 직사각형

④ 마름모

30. 다음 그림에서 BC 의 길이는?
D

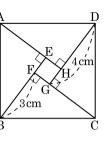


31. 다음 그림과 같은 직각삼각형 ABC 의 각 변을 한 변으로 하는 3개의 정사각형을 만들었을 때, 색칠된 부분의 넓이를 구하여라.

다음 그림에서 □JKGC 와 넓이가 같은 도형 □DEBA □BFKJ ③ □ACHI ④ △ABC ⑤ ΔABJ

삼각형 4 개는 모두 합동인 삼각형이다. (가)와 (나)에 알맞은 것을 차례대로 쓴 것은?

33. 다음 그림에서 $\overline{BF} = 3 \text{ cm}$, $\overline{DG} = 4 \text{ cm}$ 이고.



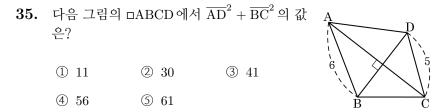
BC 의 길이는 (나) 이다.

□EFGH 의 모양은 (가) 이고,

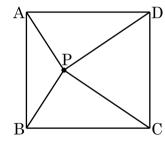
- (가): 직사각형, (나): 5 cm
 (가): 직사각형, (나): 6 cm
- ③ (가): 정사각형, (나): 5 cm
- ④ (가) : 정사각형, (나) : 8 cm
- ⑤ (가) : 정사각형, (나) : 9 cm

- **34.** 삼각형 ABC 에서 $\overline{AB} = c, \overline{BC} = a, \overline{CA} = b$ (단, c 가 가장 긴 변) 이라 하자. $c^2 - a^2 > b^2$ 이 성립한다고 할 때, 다음 중 옳은 것은? $/c < 90^{\circ}$ 이고 $\triangle ABC$ 는 둔각삼각형이다.
 - $/c > 90^{\circ}$ 이고 $\triangle ABC$ 는 둔각삼각형이다.
 - $/c < 90^{\circ}$ 이고 $\triangle ABC$ 는 예각삼각형이다.
- $\angle c > 90^{\circ}$ 이고 $\triangle ABC$ 는 예각삼각형이다.

 $\angle c = 90^{\circ}$ 이고 $\triangle ABC$ 는 직각삼각형이다.

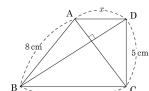


다음 그림의 직사각형 ABCD 에서 $\overline{PA}=4$, $\overline{PC}=6$ 일 때, $\overline{PB}^2+\overline{PD}^2$ 의 값을 구하여라.



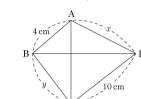
50

37. 그림과 같이 \Box ABCD 가 주어졌을 때, $x^2 + y^2$ 의 값을 구하여라.

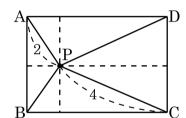


답:

38. 그림과 같이 □ABCD 가 주어졌을 때, $x^2 + y^2$ 의 값을 구하여라.



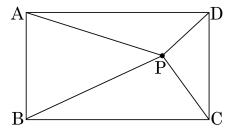
39. 정사각형 ABCD 의 내부의 한 점 P 를 잡아 A, B, C, D 와 연결할 때, $\overline{AP}=2$, $\overline{CP}=4$ 이면, $\overline{BP}^2+\overline{DP}^2$ 의 값은?



D 15 ② 20

 $5\mathrm{cm}$, $\overline{\mathrm{PD}}=4\mathrm{cm}$ 일 때, $\overline{\mathrm{PA}^2}+\overline{\mathrm{PC}^2}$ 의 값을 구하여라.

40. 다음 그림과 같이 직사각형 ABCD 의 내부에 한 점 P 가 있다. \overline{PB} =



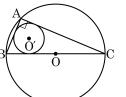
ı	딥	•			

다음 그림과 같이 직사각형 ABCD 에서 \overline{BD} 를 접는 선으로 하여 접었다. \overline{AF} 의 길이를 x 로 놓을 때, \overline{BF} 의 길이를 x 에

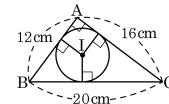
관한 식으로 나타내면? 6cm

□ Ci-· am²

이를 구하여라



다음 그림에서 원 O, O' 는 각각 △ABC 의 외접원, 내접원이다. 원 O, O' 의 반지름의 길이가 각각 13cm, 4cm 일 때, △ABC 의 넓 43. 다음 그림과 같은 $\triangle ABC$ 의 넓이가 $96cm^2$ 일 때, 내접원의 반지름의 길이를 구하여라.



납: cm

3cm 5cm

44. 다음 그림과 같은 $\triangle ABC$ 의 넓이가 $6cm^2$ 일 때, 내접원의 반지름은?

① 1 cm ② 2 cm ③ 3 cm ④ 4 cm ⑤ 5 cm

B

합을 구하여라.

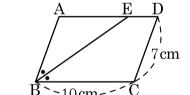
2cm

45. 다음 그림에서 점 I 는 \triangle ABC 의 내심이고, 내접원의 반지름의 길이는 2cm 이다. \triangle ABC 의 넓이가 24cm² 일 때, \triangle ABC 의 세변의 길이의

> 답: cm

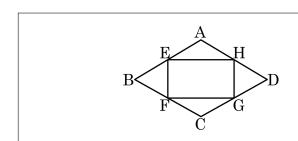
넓이가 8 인 △ABC 의 둘레의 길이가 12 일 때, △ABC 의 내접원의 반지름의 길이를 구하여라. > 답:

47. 다음 그림의 평행사변형 ABCD 에서 \overline{BE} 는 $\angle ABC$ 의 이등분선이다. $\overline{BC}=10~\mathrm{cm},~\overline{CD}=7~\mathrm{cm}$ 일 때, \overline{DE} 의 길이를 구하여라.



말 답: cm

48. 다음은 마름모 ABCD 의 각 변의 중점을 E, F, G, H 라 할 때, □EFGH 임을 증명하는 과정이다. 인에 들어갈 알맞은 것 는



$$\triangle BEF \equiv \triangle DHG \text{ (SAS 합동)}$$

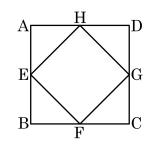
은?

즉, \Box EFGH 에서 \angle E = \angle F = \angle G = \angle H 따라서, □EFGH 는 이다.

① 등변사다리꼴 ② 직사각형

③ 마름모

④ 정사각형 ⑤ 평행사변형 49. 정사각형 ABCD 의 네 변의 중점을 이은 사각형은 어떤 사각형인지 구하는 과정이다. 안에 알맞은 말은?



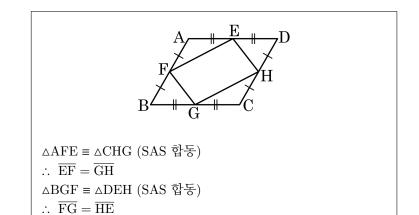
△AEH ≡ △EBF ≡ △FCG ≡ △GDH 이므로
$\overline{\mathrm{EH}} = \overline{\mathrm{EF}} = \overline{\mathrm{FG}} = \overline{\mathrm{GF}}$
또한/EFG = /HEF = /GHE = /FGH = 90°
∴ □GFEH 는 □ 이다.

사다리꼴
 평행사변형
 직사각형

④ 마름모⑤ 정사각형

- 50. 다음은 (가)사각형의 각 변의 중점을 차례로 연결했을 때 생기는 사각형이 (나)이다. 다음 중 옳지 않은 것은?
 ① 가: 등변사다리꼴 → 나: 직사각형
- ② 가: 평행사변형 → 나: 평행사변형③ 가: 직사각형 → 나: 마름모
 - ③ 가 : 직사각형 → 나 : 마름모 ④ 기 : 전시가형 - 나 : 전시가형
 - ④ 가 : 정사각형 → 나 : 정사각형⑤ 가 : 마름모 → 나 : 직사각형

51. 다음은 평행사변형 ABCD 의 각 변의 중점을 E, F, G, H 라 할 때, □EFGH 는 입을 증명하는 과정이다. 안에 들어갈 알맞은 것은?



이다.

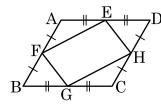
① 등변사다리꼴 ② 직사각형

따라서 □EFGH 는

③ 마름모

④ 정사각형 ⑤ 평행사변형

52. 다음은 평행사변형 ABCD 의 각 변의 중점을 연결하여 □EFGH 가 평행사변형임을 보이는 과정이다. 평행사변형의 어떠한 성질을 이용한 것인가?



$$\triangle AFE \equiv \triangle CHG \text{ (SAS 합동)}$$

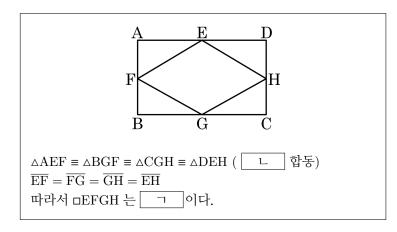
$$\therefore \overline{FG} = \overline{EH}$$

 $\therefore \overline{EF} = \overline{GH}$

따라서 □EFGH 는 평행사변형이다.

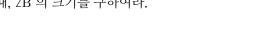
- ① 두 쌍의 대각의 크기가 각각 같다.
- ② 두 쌍의 대변의 길이가 각각 같다.
- ③ 한 쌍의 대변이 평행하고 그 길이가 같다.
- ④ 두 대각선은 서로 다른 것을 이등분한다.
- ⑤ 이웃하는 두 내각의 합이 180° 이다.

53. 다음은 직사각형 ABCD 의 각 변의 중점을 E, F, G, H 라 할 때, □EFGH 는 □ □임을 증명하는 과정이다. ¬~ ㄴ에 들어갈 알맞은 것은?



- ① ㄱ : 마름모, ㄴ : SAS
- ② ㄱ : 마름모, ㄴ : ASA
- ③ ㄱ : 마름모, ㄴ : SSS
- ④ ㄱ : 평행사변형, ㄴ : SAS
- ⑤ ㄱ : 평행사변형, ㄴ : ASA

54. 다음 그림은 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴이 AD D다. $\overline{AB} = \overline{AD} = \overline{CD}$ 이고, $\overline{AD} = \frac{1}{2}\overline{BC}$ 일 때. $\angle B$ 의 크기를 구하여라.



55.	다음 보기의 사각형	중에서 두 대각선의	l 길이가 같은 것을	을 모두 골라라.

	보기
⊙ 사다리꼴	© 등변사다리꼴
€ 직사각형	€ 정사각형
@ 마름모	ㅂ 평행사변형
> 답:	

다		

말답: _____

56. 다음 보기의 사각형 중에서 두 대각선이 서로 다른 것을 수직이등분하는 것을 모두 고르면?

	보기
① 등변사다리꼴	© 평행사변형
© 직사각형	② 마름모
정사각형	④ 사다리꼴

3 7, 0, 2

2 2,0

(4) (7), (8), (8)

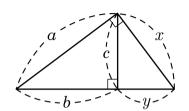
① ①, ©

57. 다음 보기 중 두 대각선의 길이가 항상 같은 것은 모두 몇 개인가?

사각형, 사다리꼴, -	등변사다리꼴,	
평행사변형, 직사각	형 마름모	
정사각형	0, 112,	
성사각 영		

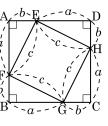
① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

58. 각 변의 길이가 다음과 같을 때, 다음 중 옳은 것을 모두 고른 것은?



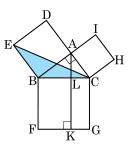
을 나타낸 것이다. 다음 중 옳지 <u>않은</u> 것은?

59. 다음 그림은 한 변의 길이가 a + b 인 정사각형



- ① $\angle EHG = 90^{\circ}$
 - ② □EFGH 는 정사각형이다.
- ③ □ABCD 와 □EFGH 의 넓이의 비는 *a* + *b* : *c* 이다.
- ⑤ \angle FEA + \angle GHC = 90°

60. 다음 그림은 ∠A = 90° 인 직각삼각형 ABC 에서 세 변을 각각 한 변으로 하는 정사각형을 그렸을 때, ΔEBC 와 넓이가 같은 것을 보기에서 모두 찾아 기호로 써라.



	보기	
¬ △ABL	\bigcirc $\triangle ALC$	© △ABF
	△BLF	△ACH
⊗ ∆LKG	⊚ △ACH	

▶ 답:	
------	--

🕥 답:

> 답:

한 변으로 하는 정사각형을 나타낸 것이다. 다음 중 □ABED와 넓이가 같은 것을 고르 며?

다음 그림은 ∠A 가 직각인 △ABC 의 각 변을

 \bigcirc \triangle ABC ② □ACHI ③ □LMGC $\square BFML$

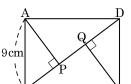
다음은 직각삼각형의 한 점에서 수선을 그은 것이다. a+b-1.2의 값을 구하여라.

63. 다음 그림과 같은 직사각형 ABCD 에서 점 A 와 점 C 가 대각선 BD에 이르는 거리의 합을 구하면?

122

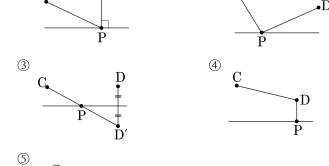
① $\frac{118}{13}$ ② $\frac{119}{13}$ ③ $\frac{120}{13}$

64.



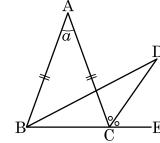
> 답: cm

다음 직사각형의 두 꼭짓점 A, C 에서 대 각선 BD 에 내린 수선의 발을 각각 P, Q 라 할 때. $\overline{AP} + \overline{PD}$ 의 길이를 구하여라. 65. 다음 그림에서 $\overline{CA} \bot \overline{AB}$, $\overline{DB} \bot \overline{AB}$ 이고, 점 P 는 \overline{AB} 위를 움직일 때 $\overline{CP} + \overline{PD}$ 의 최단 거리를 구하는 방법으로 옳은 것은?



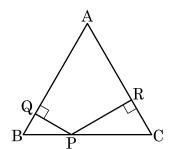
66. 다음 그림에서 $\triangle ABC$ 는 이등변삼각형이다. $\angle ACD = \angle DCE$, $\angle ABD = 2\angle DBC$, $\angle A = a$ 일 때, $\angle BDC$ 의 크기를

a 로 나타내면?

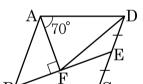


①
$$15^{\circ} - \frac{5}{12}a$$
 ② $15^{\circ} + \frac{5}{12}a$ ③ $-15^{\circ} + \frac{5}{12}a$ ④ $15^{\circ} + \frac{5}{14}a$

67. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 $\triangle ABC$ 에서 밑변 BC 위의 한 점 P에서 \overline{AB} , \overline{AC} 에 내린 수선의 발을 각각 Q, R 이라 한다. $\overline{PQ} = 3cm$, $\overline{PR} = 5cm$ 일 때, 점 B에서 \overline{AC} 에 이르는 거리를 구하여라.



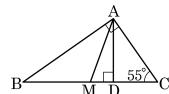
≥ 답: cm



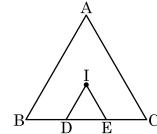
다음 그림의 평행사변형 ABCD 에서 변 CD 의 중점을 E 라 하고. 점 A 에서 $\overline{\text{BE}}$ 에 내린 수선의 발을 F 라고 한다. $\angle \text{DAF} = 70^\circ$ 라고 할 때, ∠DFE = ()° 이다. () 안에 들어갈 알맞은 수를 구하여라.

다음 그림과 같이 직각삼각형 ABC 의 직각인 꼭짓점 A 에서 빗변 BC 에 내린 수선의 발을 D 라 하고, \overline{BC} 의 중점을 M 이라 하자. $\angle C = 55^{\circ}$

일 때, ∠AMB – ∠DAM 의 크기는?



70. 다음 그림에서 점 I 는 정삼각형 ABC 의 내심이고 점 D, E 는 변 BC 의 삼등분점일 때, ∠DIE 의 크기를 구하여라.



0

	ĸ	Ν
		٠,
	6	

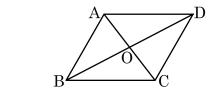
71. 다음 그림의 평행사변형 ABCD 에서 A E D ∠BAD = 110° 이고 ∠ABE = ∠CBE 일 때, ∠BED 의 크기를 구하여라.

72. 평행사변형 ABCD 의 대각선 AC 위에 두 점 E , F 를 각각 $\overline{AE} = \overline{EO}$, $\overline{OF} = \overline{FC}$ 가 되게 잡을 때, 평행사변형 ABCD 의 넓이는 평행사변형 EBFD 의 넓이의 몇 배인지 구 하여라.

답: 배

73.

74. 다음 평행사변형 ABCD가 마름모가 되려면 다음 중 어떤 조건이 더 있어야 하는지 모두 골라라.

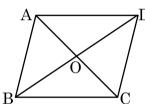


② $\angle A = 90^{\circ}$

$$\overline{AC} = \overline{BD}$$

 $\underline{\text{4}} \ \overline{\text{AC}} \bot \overline{\text{BD}}$

75. 다음 평행사변형 ABCD가 직사각형이 되려면 다음 중 어떤 조건이 더 있어야 하는지 모두 골라라.



①
$$\overline{AB} = \overline{AD}$$

② $\angle A = 90^{\circ}$

$$(3) \overline{AC} = \overline{BD}$$

 $\overline{\text{AC}} \perp \overline{\text{BD}}$

$$\bigcirc \overline{AO} = \overline{BO} = \overline{CO} = \overline{DO}$$

 $\overline{AO} = \overline{BO} = \overline{CO} = \overline{DO}$

A

는 두 대각선의 교점이다.)

①
$$\overline{AB} = \overline{DC}, \overline{AD} = \overline{BC}$$

사각형 ABCD가 평행사변형이 될 수 있는 조건이 아닌 것은? (단, O

$$b = B($$

② $\angle A = 120^{\circ}, \angle B = 60^{\circ}, \angle C = 120^{\circ}$

3
$$\angle A = \angle C, \overline{AB}//\overline{DC}$$

4 $\overline{AB} = \overline{DC}, \overline{AD}//\overline{BC}$

$$\bigcirc$$
 $\overline{OA} = \overline{OC}, \overline{OB} = \overline{OD}$