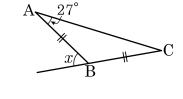
1. 다음 그림과 같이 $\overline{AB}=\overline{BC}$ 인 이등변삼각형 ABC 에서 $\angle A=27^\circ$ 일 때, ∠x 의 크기는?



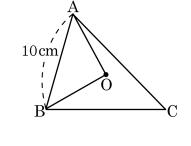
① 54°

② 56° ③ 58° ④ 60°

⑤ 62°

 $\angle x = 27^{\circ} + 27^{\circ} = 54^{\circ}$

2. 다음 그림에서 점 O는 \triangle ABC의 외심이다. $\overline{AB}=10\,\mathrm{cm}$ 이고, \triangle AOB의 둘레의 길이가 $24\,\mathrm{cm}$ 일 때, \triangle ABC의 외접원의 반지름의 길이는?



① 3cm

② 4cm

3 5cm

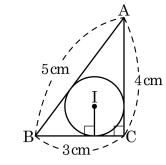
④ 6cm

⑤7cm

해설 점 O가 $\triangle ABC$ 의 외심이므로 $\overline{OA} = \overline{OB}$

따라서 $\triangle AOB$ 의 둘레의 길이는 $\overline{OA} + \overline{OB} + \overline{AB} = 2\overline{OA} + 10 = 24$ $\therefore OA = 7 \text{ (cm)}$

다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AB}=5cm$, $\overline{AC}=4cm$, $\overline{BC}=3cm$ 이고, $\angle C=90^\circ$ 일 때, 내접원 I 의 반지름의 길이는? 3.



4cm

 \bigcirc 5cm

①1cm ③ 3cm

내접원의 반지름의 길이를 r이라 하면 $\triangle ABC = \frac{1}{2} \times r \times (3+4+5) = \frac{1}{2} \times 3 \times 4$ 이다. 따라서 r = 1cm

② 2cm

이다.

다음 그림과 같이 평행사변형 ABCD 에서 4. $\angle {
m ABD} = 35\,^{\circ}$, $\angle {
m ACD} = 55\,^{\circ}$ 일 때, $\angle x - \angle y$ 의 값은?

 $\overline{\mathrm{AB}}\,/\!/\,\overline{\mathrm{DC}}$ 이므로 $\angle\mathrm{OAB}=\angle\mathrm{OCD}=55^\circ$

- ① 20° ② 25° ③ 30°
- ④ 35° ⑤ 40°
- $\triangle ABO$ 에서 $\angle AOB = 180^{\circ} (35^{\circ} + 55^{\circ}) = 90^{\circ}$ 평행사변형의 두 대각선이 서로 수직이므로 □ABCD 는 마름모 가 된다. $\angle x = 55^{\circ}, \angle y = 35^{\circ}$ $\therefore \angle x - \angle y = 20^{\circ}$

해설

- **5.** 세 변의 길이가 각각 a, b, c 인 삼각형에 대한 다음 설명 중 옳지 않은 (단, a가 가장 긴 변의 길이이다.)

 - ① $a^2 = b^2 + c^2$ 이면 직각삼각형이다. ② $a^2 > b^2 + c^2$ 이면 둔각삼각형이다.
 - ③ a = b 이고 b = c 이면 정삼각형이다.
 - $4a+b \ge c$ 이다.
 - ⑤ $a^2 < b^2 + c^2$ 이면 예각삼각형이다.

④ 삼각형의 두 변의 합은 항상 나머지 한 변보다 크다.

해설

6. 다음 그림의 직사각형 ABCD 에서 $\overline{\rm PA}=4,\overline{\rm PC}=6$ 일 때, $\overline{\rm PB}^2+\overline{\rm PD}^2$ 의 값을 구하여라.

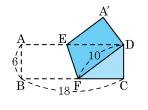


④ 54

⑤ 56

 $\overline{\mathrm{PB^2}} + \overline{\mathrm{PD^2}} = 4^2 + 6^2 = 52$ 이다.

7. 다음 그림은 직사각형 ABCD 의 점 B 가 점 D 에 오도록 접은 것이다. $\overline{\mathrm{BF}}$ 의 길이는?



①10 ② 12 ③ 14 ④ 16

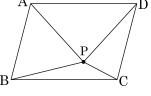
⑤ 18

 $\overline{BF}=\overline{FD}$

 $\therefore \overline{BF} = 10$

해설

8. 다음과 같은 평행사변형 ABCD의 넓이는 30 cm²이고, ΔCDP = 6 cm², ΔADP = 8 cm²일 때, ΔABP = a cm², ΔBCP = b cm²이다. 이 때, b - a의 값을 구하여라.



답:

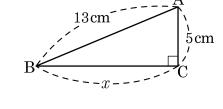
➢ 정답: -2

△ABP + △CDP = △ADP + △BCP 이므로

 $\begin{vmatrix} a+6=8+b \\ \therefore b-a=6-8=-2 \end{vmatrix}$

 $\cdots b-a=0$

9. 다음 그림에서 $\overline{\mathrm{BC}}$ 를 한 변으로 하는 정사각형의 둘레의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

▷ 정답: 48<u>cm</u>

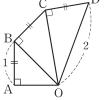
피타고라스 정리를 활용하면

▶ 답:

 $13^2 = 5^2 + x^2$ $x^2 = 169 - 25 = 144$ $\therefore x = 12(\text{cm}) (\because x > 0)$ 따라서 $\overline{\mathrm{BC}}$ 를 한 변으로 하는 정사각형의 둘레는

 $4 \times \overline{BC} = 4 \times 12 = 48$ (cm) 이다.

오른쪽 그림에서 $\overline{AB} = \overline{BC} = \overline{CD} = 1$ 일 때 \overline{OA} 의 길이를 구하시오.



답: ▷ 정답: 1

해설

 $\triangle ODC$ 에서 $\overline{OC}^2 = 2^2 - 1 = 3$ $\triangle OCB$ 에서 $\overline{OB}^2 = 3 - 1 = 2$ $\triangle OBA$ 에서 $\overline{OA}^2 = 2 - 1 = 1$ $\therefore \overline{OA} = 1$

E 6 cm D 오른쪽 그림과 같이 넓이가 $_{A}$ $_{A}$ 에서 Н F è cm $\overline{AF} = \overline{BG} = \overline{CH} = \overline{DE} = 6 \text{ cm}$ $B \stackrel{\square}{6} \text{cm} G$ 일 때, □EFGH의 둘레의 길 이를 구하시오.

▶ 답: ▷ 정답: 40cm

□ABCD = 196 cm²이므로 AD=14 cm

 $\therefore \overline{AE} = 14 - 6 = 8 \text{ (cm)}$ $\triangle AFE \equiv \triangle BGF \equiv \triangle CHG \equiv \triangle DEH$ (SAS 합

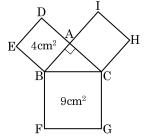
동)이므로 $\overline{\mathrm{EF}} = \overline{\mathrm{FG}} = \overline{\mathrm{GH}} = \overline{\mathrm{HE}}$ 즉, □EFGH는 정사각형이다.

 \triangle AFE에서 $\overline{\rm EF}^2 = 6^2 + 8^2 = 100$

 $\therefore \overline{EF} = 10 \text{ (cm)}$

∴ (□EFGH의 둘레의 길이)=4×10=40 (cm)

12. 다음 그림은 직각삼각형 ABC 의 각 변을 한 변으로 하여 정사각형을 그린 것이다.
□ABED = 4 cm², □BFGC = 9 cm² 일 때, □ACHI 의 넓이를 구하여라. (단, 단 위는 생략한다.)



정답: 5 cm²

▶ 답:

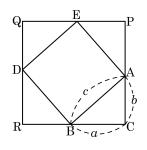
(□ABED의 넓이) + (□ACHI의 넓이) = (□BFGC의 넓이) 이므로 공식을 적용하면

해설

□ACHI 의 넓이는 5 cm² 이다.

 $\underline{\mathrm{cm}^2}$

13. 다음은 그림을 이용하여 피타고라스 정리를 설명한 것이다. 이때 () 안에 들어갈 것으로 옳지 <u>않은</u> 것은?



[가정] △ABC 에서 ∠C = 90°
[결론] $a^2 + b^2 = c^2$ [증명] 직각삼각형 ABC 에서 두 선분
CB, CA 를 연장하여 정사각형 CPQR를 만들고,
PE = QD = b 인 두 점 D, E 를 잡아
정사각형 AEDB 를 그린다.
□CPQR = (①) + 4 × (②)
(③) = $c^2 + 4 \times \frac{1}{2} \times ab$ $a^2 + 2ab + b^2 = c^2 + (④)$ 따라서 (⑤) 이다.

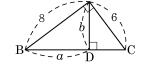
- ④ 2ab

① $\square AEDB$ ② $\triangle ABC$

③ △ABC

 $\Box \text{CPQR} = (a+b)^2$

14. 다음은 직각삼각형의 한 점에서 수선을 그은 것이다. a + b - 1.2 의 값을 구하여라.



답:

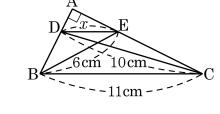
▷ 정답: 10

$\overline{ m BC}=10$ 이므로 삼각형의 넓이가 같음을 이용하면 6 imes 8=10 imes b

따라서 b=4.8 닮은 삼각형의 성질을 이용하면 $\overline{DC} = \frac{36}{10} = 3.6 \ \text{이므로} \ a=6.4$

DC = $\frac{1}{10}$ = 3.6 이므로 a = 6.4그러므로 a + b - 1.2 = 6.4 + 4.8 - 1.2 = 10

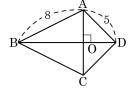
15. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{BC}=11\mathrm{cm}$, $\overline{CD}=10\mathrm{cm}$, $\overline{BE}=6\mathrm{cm}$ 일 때, x^2 의 값을 구하여라.



답:▷ 정답: 15

 $6^2 + 10^2 = 11^2 + x^2$ 이므로 $x^2 = 136 - 121 = 15$

 ${f 16}$. 다음 삼각형에서 ${f \overline{BC}}^2$ - ${f \overline{CD}}^2$ 의 값을 구하여

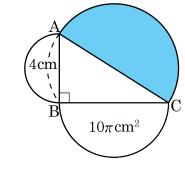


▷ 정답: 39

▶ 답:

 $8^{2} + \overline{CD}^{2} = 5^{2} + \overline{BC}^{2}$ $\overline{BC}^{2} - \overline{CD}^{2} = 8^{2} - 5^{2} = 39$

17. 다음 그림과 같이 $\angle B=90^\circ$, $\overline{AB}=4\,\mathrm{cm}$ 인 직각삼각형 ABC 의 각 변을 지름으로 하는 세 반원을 그렸다. $\overline{\mathrm{BC}}$ 를 지름으로 하는 반원의 넓이가 $10\pi\,\mathrm{cm}^2$ 일 때, 색칠한 부분의 넓이를 구하여라.



 $\underline{\pi\,\mathrm{cm}^2}$

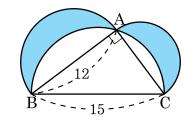
ightharpoonup 정답: $12 \ \underline{\pi \ \mathrm{cm}^2}$

답:

반지름 r 인 원의 넓이는 $r^2\pi$ 이므로 지름이 $4\mathrm{cm}$ 인 반원의 넓이

 $\stackrel{\smile}{-} 2^2\pi \times \frac{1}{2} = 2\pi (\,\mathrm{cm}^2)$ "따라서 색칠한 부분의 넓이는 $10\pi + 2\pi = 12\pi (\text{ cm}^2)$ 이다.

18. 다음 그림에서 색칠한 부분의 넓이는?

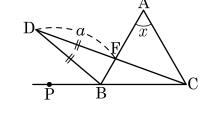


① 27 ② 54 ③ 81 ④ 100 ⑤ 108

색칠한 부분의 넓이는 큰 반원 안 직각삼각형의 넓이와 같다.

직각삼각형의 나머지 한 변이 9 이므로 그 넓이는 $\frac{1}{2} \times 12 \times 9 = 54$ 따라서 넓이는 54이다.

19. 다음 그림에서 $\triangle BDF$ 는 $\overline{DB}=\overline{DF}$ 인 이등변삼각형이다. 주어진 [조건]에 따랐을 때, $\triangle ABC$ 의 둘레의 길이를 a 로 나타내어라.

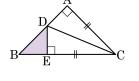


▷ 정답: 3a

답:

해설 $\angle PBD = \angle y \text{ 라고 하면}$ $D = \frac{A}{x}$ $D = \frac{1}{3}x$ $D = \frac{2}{3}x$ $D = \frac{2}{3}x$ D

20. 그림의 △ABC는 ∠A = 90°이고, ĀB = ĀC 인 직각이등변삼각형이다. ĀC = ĒC, BC⊥DĒ이고 ĀD = 6 cm 일 때, △DBE의 넓이는?



① $10 \,\mathrm{cm}^2$ ④ $22 \,\mathrm{cm}^2$ ② $14 \, \text{cm}^2$ ③ $26 \, \text{cm}^2$ $318 \,\mathrm{cm}^2$

© 20 cm

ΔABC는 직각이등변삼각형이므로 ∠ABC = 45°이다.

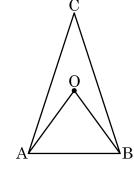
따라서 $\triangle BED$ 도 직각이등변삼각형이다. $\triangle ADC \equiv \triangle EDC$ (RHS 합동), $\overline{AD} = \overline{DE}$ 이다. 따라서 $\overline{ED} =$

 $\overline{\mathrm{EB}}$ 이다. 그러므로, $\Delta\mathrm{BED}$ 는 밑변 $6\,\mathrm{cm}$, 높이 $6\,\mathrm{cm}$ 인 직각이등변삼각형

이다. 따라서, 넓이는 $\frac{1}{2} \times 6 \times 6 = 18 \text{ (cm}^2)$ 이다.

2 2 2 2

21. \triangle ABC 의 외심을 O 라 하고 \angle A + \angle B : \angle C = 4 : 1 일 때, \angle AOB 의 크기를 구하여라.



▷ 정답: 72_°

▶ 답:

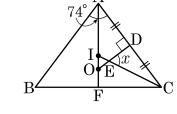
 $\angle \mathsf{OAB} = \angle \mathsf{OBA} = x, \, \angle \mathsf{OBC} = \angle \mathsf{OCB} = y, \, \angle \mathsf{OCA} = \angle \mathsf{OAC} =$

z 라고 하면 $2x + 2y + 2z = 180^{\circ}, x + y + z = 90^{\circ} \cdots \bigcirc$ 또한, ∠A + ∠B = 4∠C 이므로 $x + z + x + y = 4(y + z) \cdot \cdot \cdot \square$

 \bigcirc , \bigcirc 을 연립하면 $x=54\,^\circ$ $\triangle AOB$ 는 $\overline{OA} = \overline{OB}$ 인 이등변삼각형이므로

 $\angle AOB = 180^{\circ} - (54^{\circ} \times 2) = 72^{\circ}$

22. 다음 그림에서 \overline{AF} 위의 두 점 O 와 점 I 는 각각 이등변삼각형 ABC 의 외심, 내심이다. $\angle BAC = 74^\circ$, $\overline{AD} = \overline{CD}$ 일 때, $\angle x$ 의 크기를 구하면?

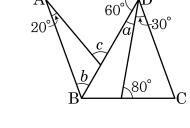


4 63.5° ① 62° ② 62.5° ③ 63°

 $\angle ACB = \angle ABC = \frac{1}{2}(180^{\circ} - 74^{\circ}) = 53^{\circ}$ $\angle ACI = \frac{1}{2} \angle ACB = \frac{1}{2} \times 53^\circ = 26.5^\circ$

따라서 $\triangle CDE$ 에서 $\angle x = 90^{\circ} - \angle ACI = 90^{\circ} - 26.5^{\circ} = 63.5^{\circ}$ 이다.

23. 다음 그림의 평행사변형 ABCD 에서 $\angle a$, $\angle b$, $\angle c$ 의 크기를 차례대로 구하여라.



답: - 답: - 전단: /a = 20 °

 ▷ 정답: ∠a = 20 °

 ▷ 정답: ∠b = 50°

▷ 정답: ∠c = 70<u>°</u>

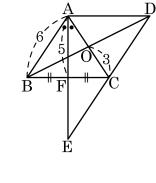
해설

답:

$$\begin{split} \angle BCD &= 180^{\circ} - 30^{\circ} - 80^{\circ} = 70^{\circ} \\ \angle ADC + \angle BCD &= 180^{\circ} \text{ , } 60^{\circ} + \angle a + 30^{\circ} + 70^{\circ} = 180^{\circ} \text{ , } \angle a = 20^{\circ} \end{split}$$

 $\angle BAD = \angle BCD$, $\triangle ABD$ 에서 $70^\circ + 60^\circ + \angle b = 180^\circ$, $\angle b = 50^\circ$ $\angle c = \angle b + 20^\circ$, $\angle c = 70^\circ$

24. 다음 평행사변형 ABCD에서 \angle BAC의 이등분선이 \overline{BC} 의 중점을 지나고, $\overline{AF}=5$, $\overline{AB}=6$, $\overline{OC}=3$ 일 때, \triangle ACE의 둘레를 구하면?



① 20

② 21

3 22

4 23

⑤ 24

 $\angle AFB = \angle CFE$, $\angle BAF = \angle FEC$ 이고, $\overline{BF} = \overline{FC}$ 이므로

 $\triangle ABF \equiv \triangle ECF$ 이다. 따라서 \triangle ACE의 둘레는 6+6+5+5=22이다.

25. 정사각형 ABCD 에서 ∠ABF = 60° 이고, $\overline{\mathrm{BF}}=\overline{\mathrm{CG}}=\overline{\mathrm{DH}}=\overline{\mathrm{AE}}$ 가 되도록 E, F, G, H 를 잡았을 때, 사각형 EFGH는 어떤 사각형 인지 말하여라.

H

▷ 정답: 정사각형

▶ 답:

해설

사각형 EFGH 에서 \angle AEH = 90° 이므로 \angle HEF = 90° 이고, $\overline{\rm EF}=\overline{\rm FG}=\overline{\rm GH}=\overline{\rm EH}$ 이므로 정사각형이다.

- ${f 26}$. 빗변의 길이가 $m^2 + n^2$ 이고, 다른 한 변의 길이가 $m^2 n^2$ 인 직각삼 각형의 나머지 한 변의 길이는? (단, m > 0, n > 0)
 - ④ 2(m+n)

① m+n

- ② 2m+n
- $\mathfrak{G} m + 2n$
- (5) 2mn

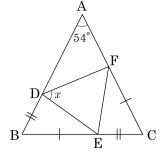
나머지 한 변의 길이를 *X* 라 하면

 $(m^{2} + n^{2})^{2} = (m^{2} - n^{2})^{2} + X^{2}$ $m^{4} + 2m^{2}n^{2} + n^{4} = m^{4} - 2m^{2}n^{2} + n^{4} + X^{2}$

 $X^2 = 4m^2n^2 = (2mn)^2$

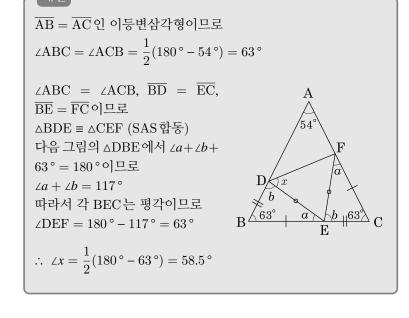
X > 0, m > 0, n > 0 이므로 X = 2mn 이다.

27. $\overline{AB} = \overline{AC}$ 인 $\triangle ABC$ 에서 $\overline{BD} = \overline{EC}$, $\overline{BE} = \overline{FC}$ 이다. $\angle DAF$ 의 크기가 54° 일 때, $\angle x$ 의 크기를 구하여라.

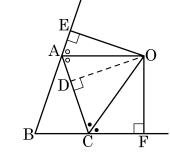


답:

➢ 정답: 58.5°



28. 오른쪽 그림에서 $\triangle ABC$ 의 $\angle A$ 의 외각의 이등분선과 $\angle C$ 의 외각의 이등분선의 교점을 O 라 하고, O 에서 $\overline{BA},\overline{BC}$ 의 연장선 위 에 내린 수선의 발을 각각 E,F 라고 할 때, 다음 중 성립하지 <u>않는</u> 것은?

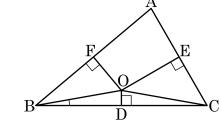


① $\angle DOC = \angle FOC$

 $\triangle EOA \equiv \triangle DOA(RHA 합동), \triangle DOC \equiv \triangle FOC(RHA 합동)$ 이

므로 ①,③,④,⑤는 맞다.

29. 다음 그림에서 점 O는 \triangle ABC의 외심이다. \angle ABO = 30°, \angle OBC = 10°일 때, \angle OCA의 크기를 구하여라.



▷ 정답: 50°

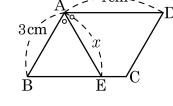
▶ 답:

점 O가 외심이므로 $\overline{\mathrm{OA}} = \overline{\mathrm{OB}} = \overline{\mathrm{OC}}$

해설

 $\triangle OAB$ 에서 $\angle OAB = \angle OBA = 30^{\circ}$ $\triangle OBC$ 에서 $\angle OCB = \angle OBC = 10^{\circ}$ $\triangle OCA$ 에서 $\angle OAC = \angle x$ 라 하면 $\angle OCA = \angle x$, $\angle AOC = 2 \times \angle ABC = 80^{\circ}$ $80^{\circ} + 2\angle x = 180^{\circ}$, $2\angle x = 100^{\circ}$ $\therefore \angle x = 50^{\circ}$

30. 다음 그림과 같이 $\overline{AB}=3$ cm, $\overline{AD}=4$ cm 인 평행사변형 ABCD에 서 $\angle A$ 의 이등분선과 \overline{BC} 와의 교점을 E라 할 때, x의 길이는? (단, $\angle B = \frac{1}{2} \angle A \)$

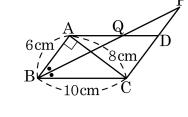


- $\textcircled{1} \ \ 2.5 cm$ ④ 3.3cm
- \bigcirc 2.7cm ⑤ 3.5cm
- 33cm

 $\angle B = \frac{1}{2} \angle A = 180 \times \frac{1}{3} = 60^{\circ}$ $\triangle ABE$ 는 이등변삼각형이고 $\angle B=60$ ° 이므로 정삼각형이다.

 $\therefore x = \overline{AE} = 3cm$

31. 다음 그림과 같은 평행사변형 ABCD 에서 □QBCD 의 넓이를 구하여라.



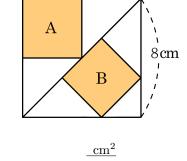
 $\underline{\mathrm{cm}^2}$

▷ 정답: 33.6<u>cm²</u>

답:

 $\triangle ABC$ 에서 높이를 h 라고 하면 $\frac{1}{2} \times 6 \times 8 = \frac{1}{2} \times 10 \times h, \ h = 4.8 \, (\mathrm{cm})$ $\triangle ABQ$ 에서 $\overline{AQ} = \overline{AB} = 6 \, (\mathrm{cm})$ 이므로 $\triangle ABQ = \frac{1}{2} \times 6 \times 4.8$ $= 14.4 \, (\mathrm{cm}^2)$ $\therefore \Box QBCD = 10 \times 4.8 - 14.4$ = 48 - 14.4 $= 33.6 \, (\mathrm{cm}^2)$

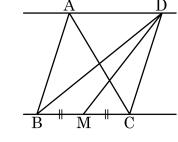
32. 다음은 한 변의 길이가 8cm 인 정사각형에서 하나의 대각선을 중심으로 두 개의 정사각형 A,B를 그린 것이다.A 와B의 넓이의 합을 구하여라.



답:

 ▷ 정답:
 $\frac{272}{9}$ cm²

두 개의 직각삼각형의 넓이는 각각 8 × 8 × $\frac{1}{2}$ = 32(cm²) 이고, 길이가 같은 것을 표시하면 다음 그림과 같다. 따라서 다음이 성립한다. (A의 넓이) = 32 × $\frac{1}{2}$ = 16(cm²) (B의 넓이) = 32 × $\frac{4}{9}$ = $\frac{128}{9}$ (cm²) ∴ 두 넓이의 합은 $\frac{272}{9}$ cm² 이다. **33.** 다음 그림에서 $\overline{\rm AD}//\overline{\rm BC}$ 이고 점 M은 $\overline{\rm BC}$ 의 중점이다. $\Delta {\rm DMC}=15~{\rm cm}^2$ 일 때, $\Delta {\rm ABC}$ 의 넓이를 구하여라.



- ① $10 \,\mathrm{cm}^2$ ④ $25 \,\mathrm{cm}^2$
- ② $15 \, \text{cm}^2$ ③ $30 \, \text{cm}^2$
- $3 20 \,\mathrm{cm}^2$

 $\overline{AD}//\overline{BC}$ 이므로 $\wedge DBC = 2 \wedge DMC$

해설

 $\Delta DBC = 2\Delta DMC = 2 \times 15 = 30 \text{ (cm}^2\text{)}$ $\Delta DBC = \Delta ABC = 30 \text{ (cm}^2\text{)}$

 $\triangle DBC = \triangle ABC = 30 \text{ (cm}^2\text{)}$