- 1. 임의의 실수 x에 대하여 $x^2-3x+2=a+bx+cx(x-1)+dx(x-1)(x-2)$ 가 항상 성립할 때, a+b+c+d의 값을 구하면? (단, a, b, c, d는 상수)
 - 1
- ② 2 ③ 3 ④ 4 ⑤ 5

해설 x = 0을 대입하면 a = 2

x=1을 대입하면 b=-2

x = 2을 대입하면 c = 1

3차항은 없으므로d=0

 $\therefore a+b+c+d=1$

2. 다음을 연립부등식으로 나타낸 것 중 옳은 것은?

어떤 수 x 에서 4를 빼면 10 보다 작고, x 의 3 배에 3 를 더하면 22 보다 작지 않다.

①
$$\begin{cases} x - 4 < 10 \\ 3x + 3 > 22 \end{cases}$$
②
$$\begin{cases} x - 4 < 10 \\ 3x + 3 < 2 \end{cases}$$
③
$$\begin{cases} x - 4 < 10 \\ 3x + 3 < 2 \end{cases}$$
③
$$\begin{cases} x + 4 < 10 \\ 3x + 3 < 2 \end{cases}$$
⑤
$$\begin{cases} x + 4 < 10 \\ 3x - 3 \ge 22 \end{cases}$$

 $\begin{cases} x - 4 < 10 \\ 3x + 3 \ge 22 \end{cases}$ 문제의 뜻에 맞게 세운다.

- **3.** 부등식 $|x-2|+|x+3| \ge -2x+9$ 의 해는?

 - ① $x \ge 2$ ② $-3 \le x \le 2$ ③ $1 < x \le 2$
- ④ x < 2 ⑤ 해가 없다.

(i) x < -3일 때,

- $-2x 1 \ge -2x + 9, -1 \ge 9$ 따라서 이 범위에서 해가 존재하지 않는다.
- (ii) -3 ≤ x < 2 일 때, $5 \ge -2x + 9$
- $2x \ge 4$, $x \ge 2$ 따라서 이 범위에서 해가 없다.
- (iii) $x \ge 2$ 일 때, $2x + 1 \ge -2x + 9$
- $4x \ge 8$, $x \ge 2$ 따라서 이 범위에서의 해는 $x \ge 2$ 이다.
- 세 범위의 해를 연립하면 결과는 $\therefore x \ge 2$

- $\overline{AB}=7,\;\overline{BC}=8,\;\overline{AC}=5$ 인 $\triangle ABC$ 에서 \overline{BC} 의 중점을 M 이라 할 4. 때, $\overline{\mathrm{AM}}$ 의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $\sqrt{21}$

 $\overline{\mathrm{BM}}=4,\,\overline{\mathrm{AM}}=x$ 이므로 중선정리에 의해

해설

 $7^2 + 5^2 = 2(x^2 + 4^2) :: x = \sqrt{21}$

두 점 A(3, 6), B(a, 4) 의 중점 M 과 두 점 C(2, 3), D(-4, b) 의 중점 **5.** N 이 일치한다고 할 때, a+b 의 값은?

① -2 ② -1 ③ 0 ④ 1

⑤2

중점 M
$$\left(\frac{3+a}{2}, \frac{6+4}{2}\right)$$
 과 중점 N $\left(\frac{2+(-4)}{2}, \frac{3+b}{2}\right)$ 이 일치
하므로
$$\frac{3+a}{2} = \frac{2+(-4)}{2}, \ 3+a=-2 \ \therefore \ a=-5$$

$$\frac{6+4}{2} = \frac{3+b}{2}, \ 3+b=10 \ \therefore \ b=7$$

$$\therefore \ a+b=2$$

- **6.** 점 (2,5)를 지나고 x 축에 평행한 직선이 y = 3x 4 와 만나는 교점의 좌표는?
 - ① (2,2) ② (3,5) ③ (4,5)4 (1,-1) 5 (1,2)

해설

점 (2,5)를 지나고 x 축에 평행한 직선의 방정식은 y=5 이므로 구하는 교점은 두 직선

 $\begin{cases} y = 5 & \cdots \\ y = 3x - 4 & \cdots \end{cases}$ 의 교점이다. 이 때, \bigcirc 을 \bigcirc 에 대입하면 5=3x-4 $\therefore x = 3$ 따라서, 교점의 좌표는 (3,5)이다.

- (3k+2)x-(k+1)y+4=0은 k 값에 관계없이 한 정점 A(a, b) 를 7. 지난다. 이때, a+b 값은?
 - ① 12
- 2 14
- **3**16
- **4** 18
- ⑤ 20

준 식 : (3x - y)k + 2x - y + 4 = 0

해설

- 이 식이 k 에 대한 항등식이므로
- $3x y = 0 \cdots \bigcirc$
- $2x y + 4 = 0 \cdots \bigcirc$
- $\bigcirc \bigcirc : x = 4, \ y = 12$
- $\therefore A(a, b) = (4, 12)$ $\therefore a+b=4+12=16$

8. 다항식 $x^3 + ax + b$ 가 다항식 $x^2 - x + 1$ 로 나누어 떨어지도록 상수 a + b의 값을 구하여라.

답:

➢ 정답: 1

해설

나누어 떨어지려면 나머지가 0이어야 하므로 $x^2 = x - 1$ 을 대입하면 ax + (b - 1) = 0 이 등식이 x에 대한 항등식이므로, a = 0, b - 1 = 0 $\therefore a = 0, b = 1$ $\therefore a + b = 1$

 $x^3 + ax + b$

해설

 $= (x^{2} - x + 1)Q(x)$ $= (x^{2} - x + 1)(x + b)$ $\therefore b = 1, a = 0$

- 9. $x^3 2x^2 + a$ 가 x + 3 로 나누어 떨어지도록 상수 a 의 값을 구하여라.
 - 답:

▷ 정답: a = 45

 $f(-3) = (-3)^3 - 2(-3)^2 + a = a - 45 = 0$

 $\therefore \ a = 45$

- **10.** 다항식 $2x^3 + ax^2 + bx + 3$ 이 다항식 $2x^2 x 3$ 으로 나누어 떨어질 때, a + b 의 값은 ?

- ① 3 ② 1 ③ -1 ④ -2 ⑤ -5

해설

$$2x^{3} + ax^{2} + bx + 3 = (2x^{2} - x - 3)Q(x)$$
$$= (x+1)(2x-3)Q(x)$$

$$= (x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)(2x-3)Q(x+1)$$

$$\therefore a-b=-1\cdots \bigcirc$$

$$x = \frac{3}{2}$$
 일 때, $\frac{27}{4} + \frac{9}{4}a + \frac{3}{2}b + 3 = 0$

$$27 + 9a + 6b + 12 = 0$$

 $\therefore 3a + 2b = -13 \cdots \bigcirc$

①, ① 에서
$$a=-3$$
, $b=-2$

$$\therefore a + b = (-3) + (-2) = -5$$

11. x 가 실수 일 때, 다음 중 $x + \frac{1}{x}$ 의 값이 될 수 <u>없는</u> 것은? (단, $x \neq 0$

① -5 ② -2 ③1 ④ 3 ⑤ 5

 $x + \frac{1}{x} = t$ 라 하고, 양변에 $x \equiv$ 곱하면 $x^2 + 1 = tx$ $x^2 - tx + 1 = 0$ 에서 $x \leftarrow$ 실수이므로 $D = t^2 - 4 \ge 0$ $\therefore t^2 \ge 4, t \le -2$ 또는 $t \ge 2$

- **12.** 이차부등식 $x^2 + 2x + a < 0$ 의 해가 -4 < x < 2일 때, a의 값을 구하여라.(단, a 는 상수)
 - 답:

▷ 정답: -8

해가 -4 < x < 2 이므로

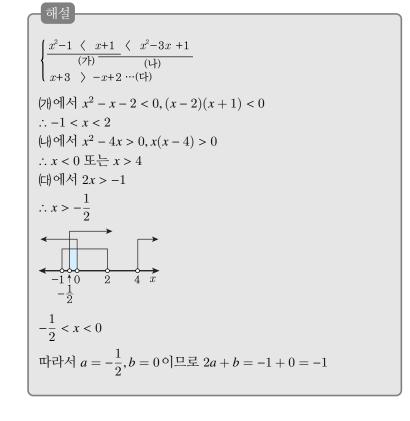
해설

(x+4)(x-2) < 0 $x^2 + 2x - 8 = x^2 + 2x + a$

 $\therefore a = -8$

13. 연립부등식 $\begin{cases} x^2 - 1 < x + 1 < x^2 - 3x + 1 \\ x + 3 > -x + 2 \end{cases}$ 의 해가 a < x < b 일 때, 2a + b 의 값은?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2



14. 세 꼭짓점의 좌표가 각각 A(a,3), B(-1,-5), C(3,7) 인 $\triangle ABC$ 가 $\angle A$ 가 직각인 직각삼각형이 되도록 하는 상수 a의 값들의 합은?

① -2 ② -1 ③ 0 ④ 1

ΔABC에서 ∠A가 직각이므로

피타고라스의 정리에 의해 $\overline{AB}^2 + \overline{CA}^2 = \overline{BC}^2 \cdots \bigcirc$ 이때, 세 점 A(a,3), B(-1,-5), C(3,7)에 대하여 $\overline{AB}^2 = (-1-a)^2 + (-5-3)^2 = a^2 + 2a + 65$

 $\overline{\text{CA}}^2 = (a-3)^2 + (3-7)^2 = a^2 - 6a + 25$

 $\overline{\mathrm{BC}}^2=(3+1)^2+(7+5)^2=160$ 이므로 ①에 의해 $2a^2-4a+90=160$

 $\therefore a^2 - 2a - 35 = 0$

따라서 이차방정식의 근과 계수의 관계에 의해 a의 값들의 합은

2이다.

- **15.** 두 점 A(1, 2), B(-3, 4) 를 지나는 직선에 평행하고 y 절편이 -1 인 직선의 방정식은 y = ax + b 이다. 이 때, a + b 의 값은 ?
 - ① -2
- ② $-\frac{3}{2}$ ③ 0 ④ $\frac{3}{2}$
- ⑤ 2

직선 y = ax + b 는 두 점 A(1, 2), B(-3, 4) 를 지나는 직선에 평행하므로 기울기는 같다. $\therefore a = \frac{2-4}{1-(-3)} = \frac{-2}{4} = -\frac{1}{2}$

$$\begin{array}{c|cccc} & 1 - (-3) & 4 & 2 \\ & & & \\$$

$$a+b=-\frac{1}{2}+(-1)=-\frac{3}{2}$$

16. 직선 $\frac{x}{a} + \frac{y}{b} = 1$ 과 x축, y축으로 둘러싸인 부분의 넓이를 직선 y = mx가 이등분할 때, m의 값은? (단, a > 0, b > 0)

17. 이차방정식 $x^2 - ay^2 - 4x + 2y + k = 0$ 이 원을 나타낼 때 두 괄호에 들어갈 알맞은 값의 합을 구하여라.

a = (), k < ()

답:

▷ 정답: 4

원의 방정식이 되기 위해서는 x^2 의 계수와 y^2 의 계수가 같아야

하므로 a = -1또한, 준식을 표준형으로 나타내면, $x^2 - 4x + y^2 + 2y + k = 0$ 에서

 $(x-2)^2 + (y+1)^2 = 5 - k$

여기서, 5 - k > 0 이어야 하므로 k < 5

- **18.** x에 대한 삼차식 $x^3 + ax^2 + bx + 3$ 이 $x^2 + 1$ 로 나누어떨어질 때, 상수 a, b의 값을 정하면?
 - ③ a = 3, b = -1
 - ① a = -1, b = 3 ② a = 1, b = 3
- \bigcirc a = 3, b = 1

$$x^{3} + ax^{2} + bx + 3 = (x^{2} + 1)(x + c)$$
$$= x^{3} + cx^{2} + x + c$$
$$\therefore a = c, b = 1, c = 3$$

∴
$$a = c, b = 1, c = 3$$

∴ $a = 3, b = 1$

19. $(x^3 + 2x^2 - 3x + 2)^4 (2x - 1)^7$ 을 전개했을 때, 모든 계수들의 합을 구하여라.

▶ 답:

➢ 정답: 16

해설

 $(x^3 + 2x^2 - 3x + 2)^4 \cdot (2x - 1)^7$ = $a_0 x^{19} + a_1 x^{18} + a_2 x^{17} + \dots + a_{19}$ 로 놓으면

계수들의 총합 $a_0+a_1+\cdots+a_{19}$ 는 양변에 x=1을 대입한 결과와 같으므로 항등식의 성질에서 $(1+2-3+2)^4\cdot(2-1)^7=2^4=16$

- **20.** x에 다항식 f(x)를 x-2로 나누면 나머지가 5이고, x-3으로 나누면 나머지가 9이다. 이 다항식을 (x-2)(x-3)으로 나눌 때의 나머지를 구하면?
 - ① x-1 ② 2x+3 ④ 4x+3 ⑤ 3x-1
- ② 2x + 3 ③ 4x 3

나머지 정리에서 f(2) = 5, f(3) = 9 f(x) = (x-2)(x-3)Q(x) + ax + b 라 놓으면, f(2) = 2a + b = 5, f(3) = 3a + b = 9을 연립하여 풀면 a = 4, b = -3∴ 나머지는 4x - 3

- **21.** 이차항의 계수가 모두 1인 두 다항식의 최대공약수가 x 2이고, 최소공배수가(x+1)(x-2)(x-3)인 두 이차식을 구하면?
 - ① (x+1)(x-2), (x-2)(x-3)② (x+1)(x-2)(x-3), (x-2)

 - (3) $(x+1)^2$, (x-2)(x-3)
 - (4) (x+1)(x-3), (x-2)(x-3)(x+1)(x-2), (x+1)(x-3)

두 다항식은 (x-2)a, (x-2)b (a, b는 서로소)

해설

최소공배수는 (x-2)ab = (x+1)(x-2)(x-3) $a = x + 1, \ b = x - 3 \ (\stackrel{\rightharpoonup}{\text{$\stackrel{\rightharpoonup}{\text{\sqcup}}}} \ a = x - 3, \ b = x + 1)$ 따라서 두 다항식은 (x-2)(x+1), (x-2)(x-3) **22.** $4x^2 - 3x + 2 = 0$ 의 두 근을 α, β 라 할 때, $(3\alpha - 2)(3\beta - 2)$ 의 값을 구하면?

①4 ② 5 ③ 6 ④ 7 ⑤ 8

국과 계수의 관계에 의해
$$\alpha + \beta = \frac{3}{4}, \alpha\beta = \frac{1}{2}$$
$$(3\alpha - 2)(3\beta - 2) = 9\alpha\beta - 6(\alpha + \beta) + 4$$
$$= 9 \cdot \frac{1}{2} - 6 \cdot \frac{3}{4} + 4$$
$$= \frac{9}{2} - \frac{9}{2} + 4 = 4$$

$$=9\cdot\frac{1}{2}-6\cdot\frac{3}{4}+4$$

$$9 \quad 9$$

- **23.** 이차방정식 $x^2+3x+1=0$ 의 두 근을 α , β 라 할 때, $\alpha+\frac{1}{\beta}$, $\beta+\frac{1}{\alpha}$ 를 두 근으로 하는 이차항의 계수가 1 인 이차방정식을 구하면?
 - $3 x^2 + 4 = 0$
- $2 x^2 + 6x 4 = 0$ $4 x^2 - 6x + 4 = 0$

근과 계수와의 관계에 의해서 두 근 α , β 에 대해 $\alpha+\beta=-3$, $\alpha\beta=1$ 두 근을 $\alpha + \frac{1}{\beta}$, $\beta + \frac{1}{\alpha}$ 로 하는

방정식에서

두 근의 합 \Rightarrow $\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right)$

 $= (\alpha + \beta) + \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$ $= (\alpha + \beta) + \frac{\alpha + \beta}{\alpha \beta}$

 $= (-3) + \frac{-3}{1} = -6$ 두 근의 곱 $\Rightarrow \left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$

 $\therefore x^2 - (-6)x + 4 = x^2 + 6x + 4 = 0$

 $= \alpha\beta + 2 + \frac{1}{\alpha\beta} = 4$

24. x, y, z가 실수일 때, 다음 식의 최댓값을 구하여라.

$$4x - x^2 - y^2 - z^2 + 5$$

답:

▷ 정답: 9

해설

 $4x - x^2 - y^2 - z^2 + 5$

 $= -(x^2 - 4x) - y^2 - z^2 + 5$ $= -(x - 2)^2 - y^2 - z^2 + 9$ x, y, z 는 실수이므로 $(x - 2)^2 \ge 0, y^2 \ge 0, z^2 \ge 0$ 따라서 $4x - x^2 - y^2 - z^2 + 5$ 는 x - 2 = 0, y = 0, z = 0일 때, 최댓값 9를 갖는다.

25. 가로의 길이와 세로의 길이의 합이 20 인 직사각형의 넓이를 y라고 할 때, y의 최댓값을 구하여라.

가로의 길이를 x, 세로의 길이를 20 - x라고 하자.

답:

▷ 정답: 100

 $y = x \times (20 - x)$

 $= -x^2 + 20x$ $= -(x^2 - 20x)$

 $= -(x^2 - 20x)$ $= -(x - 10)^2 + 100$

따라서 100이 최댓값이다.

26. $3 < 11 - 4x \le 15$ 일 때, x가 될 수 있는 정수를 모두 써라.

 답:

 답:

 답:

 > 접:

 → 정답:
 -1

 > 정답:
 0

▷ 정답: 1

해설 3 < 11 - 4x ≤ 15에서

 $-8 < -4x \le 4,$

2 > x ≥ -1 따라서 만족하는 x는 x = -1, 0, 1

27. 다음 네 개의 부등식을 두 개씩 연립하였을 때의 해를 A, B, C 라고 할 때, 해가 없는 것을 모두 골라라.

 $-\frac{3}{2}(x+1) \geqslant 6$ 2(x+2) > -(x+5) $2(x+5) \le 4$ -C $3(x+3) \geq 2x+11$

답:

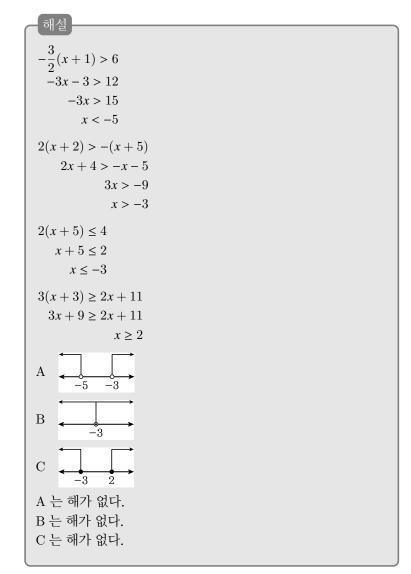
답:

답:

▷ 정답 : A

▷ 정답: B

▷ 정답: C



- **28.** 연립부등식 $3x 2 \le 5x + 8 \le 4x + a$ 의 해가 $b \le x \le 9$ 일 때, a + b의 값은? (단, a, b 는 상수)
 - ① -6 ② -4 ③ 12 ④ 14 ⑤ 22

 $3x - 2 \le 5x + 8$, $3x - 5x \le 8 + 2$, $-2x \le 10$

 $\therefore x \ge -5$

 $5x + 8 \le 4x + a$, $5x - 4x \le a - 8$

 $\therefore x \le a - 8$

해설

 $-5 \le x \le a-8$

그런데 해가 $b \le x \le 9$ 이므로 b = -5, a - 8 = 9

 $\therefore a + b = 17 + (-5) = 12$

- **29.** 부등식 (a-b)x + (b-2a) > 0의 해가 $x > \frac{3}{2}$ 일 때, 부등식 $ax^2 + (a+2b)x + (a+3b) < 0$ 의 해를 구하면?
 - ① 3 < x < 7 ② -3 < x < 1 ③ x < 2, x > 3
 - \bigcirc -1 < x < 2 \bigcirc \bigcirc x < -2, x > 4

 $(a-b)x > 2a - b 의 해가 x > \frac{3}{2} 이려면$ $a-b > 0, \frac{2a-b}{a-b} = \frac{3}{2} 이어야 한다.$ $\therefore a = -b, b < 0$ 준 부등식 $-bx^2 + bx + 2b < 0$ 에서

 $x^{2} - x - 2 < 0, (x - 2)(x + 1) < 0$ $\therefore -1 < x < 2$

- **30.** 임의의 실수 x에 대하여 $x^2 + 2ax + 2a + 3 \ge 0$ 이 성립하기 위한 상수 a의 최솟값을 구하여라.
 - 답:▷ 정답: -1

 $x^2 + 2ax + 2a + 3 \ge 0$ 이 항상 성립할 조건은

해설

 $D/4 = a^2 - 2a - 3 = (a+1)(a-3) \le 0$ $\therefore -1 \le a \le 3$

a의 최솟값은 -1

- **31.** 이차부등식 $ax^2 bx + c < 0$ 의 해가 x < -1또는 x > 3일 때, 이차부 등식 $ax^2 + cx + b > 0$ 의 해는?
 - ① -2 < x < 1 ② -1 < x < 0
 - (4) 1 < x < 3 (5) 2 < x < 5
- 31 < x < 2

해설

x < -1또는 x > 3인 해를 갖는 이차항계수가

1 인 이차부등식은 (x+1)(x-3) > 0 이므로, $ax^2 - bx + x < 0$ 의 a가 음수이고, 이 부등식은 a(x+1)(x-3) < 0과 같다. 따라서 b=2a, c=-3a이고 주어진 부등식 $ax^2 - 3ax + 2a = a(x^2 - 3x + 2)$ = a(x-2)(x-1) > 0이 된다. a < 0이므로 만족하는 해는 (x-1)(x-2) < 0에서

1 < x < 2

- **32.** 세 점 A(6,1), B(-1,2), C(2,3)을 꼭지점으로 하는 삼각형 ABC의 외심의 좌표를 구하면?
 - ① (2,-1) ② (2,-2) ③ (3,-2)
 - 4 (2,2) 5 (1,-2)

해설

외심의 좌표를 $\mathrm{O}(a,b)$ 라 하면 $\overline{\mathrm{OA}}=\overline{\mathrm{OB}}$ 즉, $\overline{\mathrm{OA}^2} = \overline{\mathrm{OB}^2}$ 이므로 $(a-6)^2 + (b-1)^2 = (a+1)^2 + (b-2)^2$

 $\therefore 7a - b = 16 \cdots \bigcirc$ $\overline{\mathrm{OA}} = \overline{\mathrm{OC}}$

즉 $\overline{OA}^2 = \overline{OC}^2$ 이므로

 $(a-6)^2 + (b-1)^2 = (a-2)^2 + (b-3)^2$ $\therefore 2a - b = 6 \cdots \bigcirc$

 \bigcirc , \bigcirc 에서 a=2,b=-2 $\therefore O(2,-2)$

- ${f 33.}$ 좌표평면상의 점 ${f P}(2,3)$ 에 대하여, 점 ${f P}$ 를 지나고 $\overline{{f OP}}$ 에 수직인 직선의 방정식은?

 - ① x 2y = 5 ② 2x + 3y = 13 ③ x + 3y = 10

 $\overline{\text{OP}}$ 의 기울기가 $\frac{3}{2}$ 이므로 수직인 직선의 기울기는 $-\frac{2}{3}$ 이다. 그리고 (2, 3) 을 지나므로

 $\Rightarrow y = -\frac{2}{3}(x-2) + 3$ $\Rightarrow 2x + 3y = 13$

$$\Rightarrow 2x + 3y = 13$$

- **34.** 세 직선 3x + y = 7, 2x + y = k, kx 5y = 5이 한 점 P(a, b) 에서 만날 때 a+b의 최댓값은?
 - ③33 ④ 4 ⑤ 5 ① 1 ② 2

해설

 $3x + y = 7 \cdots \bigcirc$

 $2x + y = k \cdot \cdot \cdot \bigcirc$

 $kx - 5y = 5 \cdots \bigcirc$

③과 ⓒ의 교점은 (7-k, -14+3k)이므로

ⓒ에 대입하면 $k^2 + 8k - 65 = 0$ ∴ k = 5 또는 -13

∴ P(a, b) = (2, 1) 또는 (20, -53)

 $\therefore a+b$ 의 최댓값은 2+1=3

35. 다음 두 원 $x^2 + y^2 = 36$, $(x-6)^2 + (y-8)^2 = 4$ 의 공통외접선과 공통내접선의 길이의 합을 구하면?

① $2 + \sqrt{19}$ ② $1 + 3\sqrt{11}$ ③ $\sqrt{13} + \sqrt{31}$

두 원의 반지름의 길이는 각각 6,2 이고,

두 원의 중심을 각각 O, O' 이라고 할 때,

O(0,0),O'(6,8) 이므로 중심거리는 $\sqrt{6^2 + 8^2} = 10$ 이다. (i) 다음 그림 과 같이 점 O' 에서 $\overline{\mathrm{OH}}$ 에 내린 수선의 발을 T라고 하면

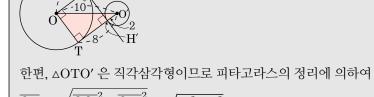
 $\overline{\mathrm{TH}} = \overline{\mathrm{O'H'}} = 2$ 이므로

 $\overline{OT} = 6 - 2 = 4$

한편, ΔOTO' 은 직각삼각형이므로 피타고라스의 정리에 의하여

 $\overline{O'T} = \sqrt{\overline{OO'}^2 - \overline{OT}^2} = \sqrt{10^2 - 4^2} = 2\sqrt{21}$ 이 때, $\overline{\mathrm{HH}}=\overline{\mathrm{O'T}}$ 이므로 구하는 공통외접선의 길이는 $2\sqrt{21}$

(ii) 다음 그림과 같이 점 O 에서 $\overline{O'H'}$ 의 연장선에 내린 수선의 발을 T 라고 하면 $\overline{TH'} = \overline{OH} = 6$ 이므로 $\overline{O'T} = 6 + 2 = 8$



 $\overline{OT} = \sqrt{\overline{OO'}^2 - \overline{O'T}^2} = \sqrt{10^2 - 8^2} = 6$ 이때, $\overline{\mathrm{HH'}}=\overline{\mathrm{OT}}$ 이므로 구하는 공통내접선의 길이는 6(i), (ii) 에서 구하는 길이의 합은 $2\sqrt{21} + 6$