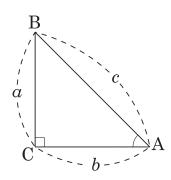

1. 다음 그림과 같은 직각삼각형 $\triangle ABC$ 에서 $\sin A$ 의 값은 얼마인가?

①
$$\frac{2\sqrt{41}}{41}$$

해설

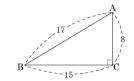
$$\frac{\sqrt[4]{41}}{41}$$



$$\overline{AB} = \sqrt{5^2 + 4^2} = \sqrt{41}$$

$$\therefore \sin A = \frac{\overline{BC}}{\overline{AB}} = \frac{4}{\sqrt{41}} = \frac{4\sqrt{41}}{41}$$

2. 다음 그림을 보고, sin A, cos A, tan A 의 값을 각각 바르게 구한 것은?

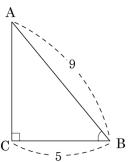


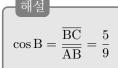
①
$$\sin A = \frac{a}{b}$$
, $\cos A = \frac{b}{c}$, $\tan A = \frac{a}{c}$

②
$$\sin A = \frac{b}{c}$$
, $\cos A = \frac{a}{c}$, $\tan A = \frac{a}{b}$

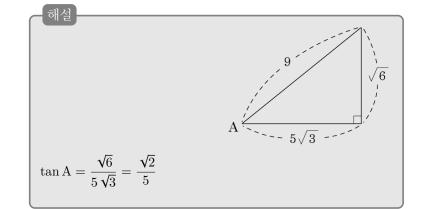
$$\sin \mathbf{A} = \frac{높이}{\cancel{!}\cancel{!}\cancel{!}} = \frac{a}{c} \;, \; \cos \mathbf{A} = \frac{\mathop{\mathbb{L}}\cancel{!}}{\cancel{!}\cancel{!}\cancel{!}} = \frac{b}{c} \;, \; \tan \mathbf{A} = \frac{\cancel{!}\cancel{!}\cancel{!}}{\mathop{\mathbb{L}}\cancel{!}\cancel{!}} = \frac{a}{b}$$

다음 중 cosA 와 값이 같은 삼각비는?


$$\cos B$$


$$\sin B = \frac{8}{17}$$
, $\cos A = \frac{8}{17}$ 이므로, $\sin B = \cos A$ 이다.

다음과 같이 ∠C가 90°인 직각삼각형
 △ABC에서 cos B의 값은?


- (2
 - $\frac{2}{5}$
- $\frac{3}{8}$

5. 한 직각삼각형에서
$$\cos A = \frac{5\sqrt{3}}{9}$$
일 때, $\tan A$ 의 값은?

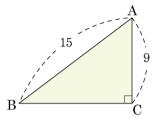
①
$$\frac{\sqrt{2}}{4}$$
 ② $\frac{\sqrt{2}}{5}$ ③ $\frac{\sqrt{2}}{6}$ ④ $\frac{\sqrt{2}}{7}$ ⑤ $\frac{\sqrt{2}}{8}$

6. $\sin 0^{\circ} \times \cos 60^{\circ} + \cos 0^{\circ} \times \tan 45^{\circ} - \sin 45^{\circ} \times \tan 60^{\circ} = ?$

①
$$1 - \frac{\sqrt{3}}{2}$$
 ② $1 + \frac{\sqrt{3}}{2}$ ③ $1 - \frac{\sqrt{3}}{2}$ ④ $1 + \frac{\sqrt{6}}{2}$

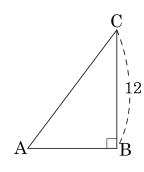
해설
$$\sin 0^{\circ} \times \cos 60^{\circ} + \cos 0^{\circ} \times \tan 45^{\circ} - \sin 45^{\circ} \times \tan 60^{\circ}$$
$$= 0 \times \frac{1}{2} + 1 \times 1 - \frac{\sqrt{2}}{2} \times \sqrt{3}$$
$$= 1 - \frac{\sqrt{6}}{2}$$

$$\cos A + \sin A = \frac{7}{5}$$


②
$$\tan A = \frac{3}{4}$$

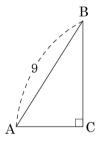
③ $\sin B = \frac{3}{5}$
④ $\tan B = \frac{3}{5}$

$$4) \tan B = \frac{1}{5}$$


$$5) \cos B \times \cos A = \frac{12}{5}$$

$$\overline{BC} = \sqrt{15^2 - 9^2} = 12$$

$$\text{(2)} \tan A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{3}$$



8. 다음 그림과 같은 직각삼각형 ABC 에서 $\tan A = \frac{4}{3}$ 이고, \overline{BC} 가 12일 때, \overline{AC} 의 길이는?

대설
$$\tan A = \frac{\overline{BC}}{\overline{AB}} = \frac{12}{\overline{AB}} = \frac{4}{3} \text{ 이므로 } 12 \times 3 = 4 \times \overline{AB} \text{ 이다.}$$

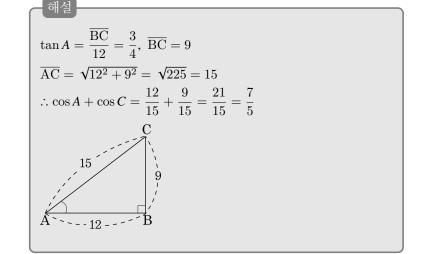
$$\Rightarrow \overline{AB} = 9$$
 따라서 $\overline{AC} = \sqrt{9^2 + 12^2} = 15 \text{ 이다.}$

9. $\cos A = \frac{2}{3}$ 인 직각삼각형 ABC 에서 $\overline{AB} = 9$ 일 때, $\triangle ABC$ 의 넓이는? (단, $0^{\circ} < A < 90^{\circ}$)

①
$$9\sqrt{3}$$
 ② $9\sqrt{5}$ ③ $7\sqrt{5}$ ④ $9\sqrt{7}$ ⑤ $18\sqrt{5}$

$$\cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{2}{3} \text{ 이므로 } \overline{AC} = \overline{AB} \times \cos A = 9 \times \frac{2}{3} = 6 \text{ 이다.}$$
 피타고라스 정리에 의해 $\overline{BC} = \sqrt{9^2 - 6^2} = \sqrt{45} = 3\sqrt{5}$ 이다. 따라서 삼각형 ABC 의 넓이는 $6 \times 3\sqrt{5} \times \frac{1}{2} = 9\sqrt{5}$ 이다.

10. $\sin A = 0.6$ 일 때, $\cos A + \tan A$ 의 값을 구하면? (단, $0^{\circ} \le A \le 90^{\circ}$)


①
$$0.5$$
 ② 0.6 ③ 0.7 ④ $\frac{9}{10}$ ⑤ $\frac{31}{20}$

$$\sin A = 0.6 = \frac{3}{5}$$
 이므로
$$\cos A = \frac{4}{5}, \ \tan A = \frac{3}{4}$$
이다.

파라서
$$\cos A + \tan A = \frac{4}{5} + \frac{3}{4} = \frac{31}{20}$$
 이다.

11. 다음 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{AB}=12, \ \tan A=\frac{3}{4}$ 일 때, $\cos A+\cos C$ 의 값은?

①
$$\frac{5}{12}$$
 ② $\frac{7}{12}$ ③ $\frac{3}{5}$ ④ $\frac{4}{5}$

12. 다음 중 옳은 것을 모두 고르면? (정답 2개)

- ① $\sin 90^{\circ} = \cos 90^{\circ} = \tan 90^{\circ}$
- ② $\sin 30^{\circ} = \cos 60^{\circ} = \tan 45^{\circ}$
- $3 \sin 90^\circ = \cos 0^\circ = \tan 90^\circ$
- $4 \sin 90^{\circ} + \cos 90^{\circ} + \tan 45^{\circ} = 2$

해설

- ① $\sin 90^\circ = 1, \cos 90^\circ = 0, \tan 90^\circ$ 는 정할 수 없다.
- ② $\sin 30^{\circ} = \frac{1}{2}, \cos 60^{\circ} = \frac{1}{2}, \tan 45^{\circ} = 1$ 이므로 $\sin 30^{\circ} = \frac{1}{2}$
- $\cos 60^{\circ} \neq \tan 45^{\circ}$
- ③ $\sin 90^{\circ} = 1, \cos 0^{\circ} = 1, \tan 90^{\circ}$ 는 정할 수 없다.
- ④ $\sin 90^{\circ} = 1, \cos 90^{\circ} = 0, \tan 45^{\circ} = 1$ 이므로 1 + 0 + 1 = 2
- ⑤ $\cos 0^{\circ} = 1$, $\tan 0^{\circ} = 0$, $\sin 90^{\circ} = 1$ 이므로 1 + 0 = 1

$$2 \sin^2 30^\circ + \cos^2 60^\circ = \frac{1}{2}$$

$$30^{\circ} + \cos 60^{\circ} = \cos 90^{\circ}$$

$$\textcircled{4} \sin 45 \degree = \cos 45 \degree \times \tan 45 \degree$$

$$(5) \sin^2 30^{\circ} + \cos^2 30^{\circ} = 1$$

③ (좌변) =
$$\frac{\sqrt{3}}{2} + \frac{1}{2}$$
, (우변) = 0

14. 다음 그림에서
$$\frac{\overline{BC}}{\overline{AC}} + \frac{\overline{AB}}{\overline{AC}}$$
 의 값은?

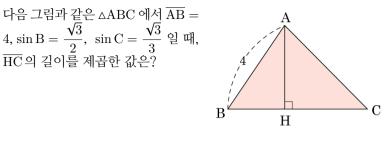
① $\frac{3}{4}$ ② $\frac{4}{7}$ ③ $\frac{4}{7}$

$$4\frac{6}{5}$$
 $5\frac{7}{5}$

$$\triangle AB_1C_1 \text{ 에서 } \overline{AC_1} = \sqrt{8^2 + 6^2} = 10$$

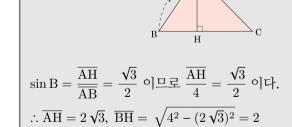
$$\triangle AB_1C_1 \text{ \triangle} \triangle ABC \text{ $(\because$ AA 젊 읍)$}$$

$$\frac{\overline{BC}}{\overline{AC}} = \frac{\overline{B_1C_1}}{\overline{AC_1}} = \frac{6}{10} = \frac{3}{5}$$


$$\frac{\overline{AB}}{\overline{AC}} = \frac{\overline{AB_1}}{\overline{AC_1}} = \frac{8}{10} = \frac{4}{5}$$

$$\therefore \left(\frac{3}{5} + \frac{4}{5}\right) = \frac{7}{5}$$

$$A \xrightarrow{C_1} \stackrel{\circ}{6}$$


$$A \xrightarrow{-8} \stackrel{\circ}{B_1} \stackrel{\circ}{B_2}$$

$$4, \sin B = \frac{\sqrt{3}}{2}, \sin C = \frac{\sqrt{3}}{3}$$
 일 때, \overline{HC} 의 길이를 제곱한 값은?

해설

4 18

$$\therefore \overline{AC} = 6, \ \overline{HC} = \sqrt{6^2 - (2\sqrt{3})^2} = 2\sqrt{6}$$

 $\sin C = \frac{\overline{AH}}{\overline{AC}} = \frac{\sqrt{3}}{3}$ 이므로 $\frac{2\sqrt{3}}{\overline{AC}} = \frac{\sqrt{3}}{3}$ 이다.

$$\therefore \ \overline{HC}^2 = 24$$

16. $\tan A = \frac{12}{5}$ 일 때, $13 \sin A - 26 \cos A$ 의 값은? (단, $0^{\circ} < A < 90^{\circ}$)

$$\tan A = \frac{12}{5}$$
 이면

$$\sin A = \frac{12}{13}, \cos A = \frac{5}{13}$$
이다.

$$\frac{5}{13}$$
 이다

대라서
$$13 \sin A - 26 \cos A = 13 \times \frac{12}{13} - 26 \times \frac{5}{13} = 12 - 10 = 2$$

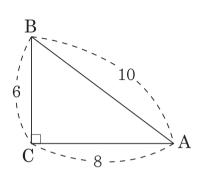
이다.

17.
$$\tan A = \sqrt{3}$$
 일 때, $\sin^2 A - \cos^2 A$ 의 값은? (단, $0^\circ \le A \le 90^\circ$)

$$2 \frac{5}{13}$$

$$3 \frac{5}{14}$$

$$\frac{5}{16}$$


$$\tan A = \sqrt{3}$$
를 만족하는 직각삼각형 ABC
를 만들면 $\overline{AC} = \sqrt{1^2 + \sqrt{3}^2} = 2$

$$\therefore \sin A = \frac{\sqrt{3}}{2}, \cos A = \frac{1}{2}$$
$$\therefore \sin^2 A - \cos^2 A$$

$$=\frac{3}{4}-\frac{1}{4}=\frac{1}{2}$$

18. 다음과 같이 ∠C = 90° 인 직각삼각형 △ABC 에서 sinA - cos A 의 값으로 바른 것은?

①
$$-\frac{1}{7}$$
 ② $-\frac{4}{5}$ ③ $-\frac{1}{5}$ ④ $-\frac{2}{3}$ ⑤ $-\frac{3}{4}$

$$\sin A = \frac{6}{10} = \frac{3}{5}, \cos A = \frac{8}{10} = \frac{4}{5}$$

$$\therefore \sin A - \cos A = \frac{3}{5} - \frac{4}{5} = -\frac{1}{5}$$

19. 삼각형의 세 내각의 크기의 비가 1 : 2 : 3 이고, 세 각 중 가장 작은 각의 크기를 ∠A 라고 할 때, sin A : cos A : tan A 는?

①
$$3\sqrt{3}:3:2\sqrt{3}$$
 ② $3:2\sqrt{3}:3\sqrt{3}$ ③ $2\sqrt{3}:3:3\sqrt{3}$
④ $3:3\sqrt{3}:2\sqrt{3}$ ⑤ $3:\sqrt{3}:2\sqrt{3}$

삼각형의 세 내각의 크기의 합은 180° 이므로 $k^\circ + 2k^\circ + 3k^\circ = 6k^\circ = 180^\circ$ 이다. $k^\circ = 30^\circ$ 이다. 따라서 $\sin 30^\circ = \frac{1}{2}, \; \cos 30^\circ = \frac{\sqrt{3}}{2}, \; \tan 30^\circ = \frac{\sqrt{3}}{3}$ 이므로

 $\sin A : \cos A : \tan A = 3 : 3\sqrt{3} : 2\sqrt{3}$ 이다.

20. 다음 식의 값은?
$$\sin^2 30^\circ + \sin^2 60^\circ - \tan 30^\circ \times \tan 60^\circ$$

①
$$3\sqrt{3}$$
 ② $2\sqrt{2}$ ③ $\sqrt{3}$ ④ $\sqrt{2}$ ⑤

$$\sin^2 30^\circ + \sin^2 60^\circ - \tan 30^\circ \times \tan 60^\circ$$

$$= \frac{1}{2}^2 + \frac{\sqrt{3}^2}{2} - \frac{1}{\sqrt{3}} \times \sqrt{3}$$

$$= \frac{1}{4} + \frac{3}{4} - 1 = 0$$