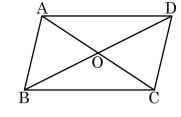
다음 중 다음 그림의 사각형 ABCD 가 평행사변형이 될 수 <u>없는</u> 것은? 1.



- ①  $\angle A = \angle C \angle B = \angle D$  $\ \, \ \, \ \, \overline{\rm AB} \ //\overline{\rm DC}$  ,  $\overline{\rm AD} \ //\overline{\rm BC}$
- $\bigcirc$   $\overline{AB}$   $//\overline{DC}$  ,  $\overline{AD} = \overline{BC}$
- $\textcircled{4} \ \overline{\mathrm{OA}} = \overline{\mathrm{OC}}, \ \overline{\mathrm{OB}} = \overline{\mathrm{OD}}$
- $\ \ \ \overline{\rm AD}\ //\overline{\rm BC}\ ,\, \triangle {\rm AOD} \equiv \triangle {\rm COB}$
- 해설 ③ 한 쌍의 대변이 평행하고 그 길이가 같아야 한다.

- ⑤  $\triangle AOD \equiv \triangle COB$  에서  $\overline{AD} = \overline{CB}$

- 다음 중 □ABCD 가 평행사변형인 것은? (단, 점 O 는 대각선 AC, **2**. BD 의 교점이다.)
  - $\overline{\text{OD}}\overline{\text{AB}} = 3\text{cm}, \, \overline{\text{DC}} = 3\text{cm}, \, \overline{\text{AB}} \, /\!/ \, \overline{\text{DC}}$

  - $\overline{OA} = 4cm, \overline{OB} = 4cm, \overline{OC} = 5cm, \overline{OD} = 5cm$ 4  $\overline{AC} = 7cm$ ,  $\overline{BD} = 7cm$

①  $\overline{AB} = 5cm$ ,  $\overline{BC} = 5cm$ ,  $\overline{CD} = 7cm$ ,  $\overline{DA} = 7cm$ 

해설

### 평행사변형이 되기 위한 조건

(1) 두 쌍의 대변이 각각 평행하다. (2) 두 쌍의 대변의 길이가 각각 같다.

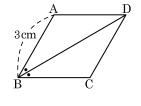
- (3) 두 쌍의 대각의 크기가 각각 같다.
- (4) 두 대각선이 서로 다른 것을 이등분한다. (5) 한 쌍의 대변이 평행하고 그 길이가 같다.

- 3. 다음 중 평행사변형이 직사각형이 되는 조건은?
  - ① 이웃하는 두 변의 길이가 같다. ② 한 내각의 크기가 직각이다.
  - (절) 인 네쉬워 크기가 작각이다
  - ③ 두 대각선이 서로 다른 것을 이등분한다.
  - ④ 두 쌍의 대변의 길이가 각각 같다.
  - ⑤ 두 대각선이 수직으로 만난다.

평행사변형의 이웃하는 두 각의 크기의 합이 180° 이므로 한

내각이 90° 임을 증명할 수 있다.

4. 다음 그림과 같은 평행사변형 ABCD 에서 대각선 BD 를 그었더니  $\angle ABD = \angle DBC$  가되었다.  $\overline{AB} = 3cm$  일 때,  $\overline{AD}$  의 길이를 구하여라.



답:▷ 정답: 3cm

<u>cm</u>

AD // BC 이므로 ∠DBC = ∠BDA (∵ 엇각)이므로

∠ABD = ∠ADB 이므로 △ABD 는 이등변삼각형 ∴  $\overline{AB} = \overline{AD} = 3$ cm 5. 다음 보기는 어떤 사각형에 대한 설명인가?

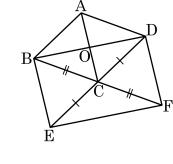
보기

- 두 대각선의 길이가 같은 평행사변형
- ① 두 대각선이 서로 다른 것을 수직이등분하는 평행사변형
- ① 사다리꼴
   ② 등변사다리꼴
   ③ 사각형

   ④ 정사각형
   ⑤ 마름모

마름모는 두 대각선의 길이가 같지 않다.

6. 다음 그림의 평행사변형 ABCD 에 대하여  $\overline{BC}=\overline{FC},\overline{DC}=\overline{EC}$  일 때, 다음 그림에서 평행사변형은 모두 몇 개인가?



**④**4개

⑤ 5개

③ 3개

□ABCD (주어진 평행사변형)

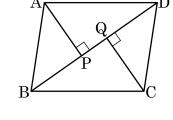
① 1개

해설

 $\Box ABEC \ (\overline{AB} / / \overline{CE} , \overline{AB} = \overline{CE} )$   $\Box ACFD \ (\overline{AD} / / \overline{CF} , \overline{AD} = \overline{CF} )$   $\Box BEFD \ (\overline{BC} = \overline{CF}, \overline{DC} = \overline{CE} )$ 

② 2개

7. 다음 그림과 같은 평행사변형 ABCD의 꼭짓점 A, C에서 대각선 BD에 내린 수선의 발을 각각 P, Q라고 한다.  $\overline{BQ}=15\,\mathrm{cm},\ \overline{QD}=10\,\mathrm{cm}$ 일 때,  $\overline{PQ}$ 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$ 

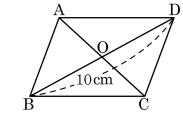
정답: 5 <u>cm</u>

▶ 답:

해설

 $\Delta ABP \equiv \Delta CDQ \text{ (RHA 합동)}$   $\overline{BP} = \overline{QD} = 10 \text{ cm } \text{이므로}$   $\overline{PQ} = \overline{BQ} - \overline{BP} = 15 - 10 = 5 \text{ (cm)}$ 

다음 그림은  $\overline{\mathrm{BD}}=10\mathrm{cm}$  인 평행사변형 ABCD이다. 평행사변형 8. ABCD가 직사각형이 되도록 하는  $\overline{OA}$  의 길이는? (단, O 는 대각선 의 교점이다.)



 $\bigcirc$  2cm



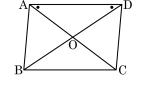
③ 7cm

④ 10cm

⑤ 12cm

평행사변형이 직사각형이 되는 조건은 두 대각선의 길이가 서로 같아야 한다. 따라서  $\overline{BD}=\overline{AC}=10 \mathrm{cm},$   $\overline{OA}=\dfrac{\overline{AC}}{2}=\dfrac{10}{2}=5 \mathrm{cm}$  이다.

9. 다음 그림과 같은 평행사변형 ABCD 에 다음 조건을 추가할 때, 직사각형이 되지 <u>않는</u> 것은?

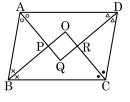


- ①  $\angle A = \angle B$ ③  $\overline{AO} = \overline{DO}$
- ②  $\overline{AC} = \overline{BD}$ ④  $\overline{AC} \perp \overline{BD}$

해설

④  $\overline{\mathrm{AC}}$   $\bot$   $\overline{\mathrm{BD}}$  는 평행사변형이 마름모가 되는 조건

10. 다음 그림의 평행사변형 ABCD에서 네 각의 이등분선으로 만들어지는 사각형 OPQR은 어떤 사각형인가?



④ 평행사변형⑤ 사다리꼴

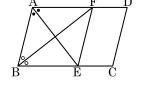
① 직사각형 ② 마름모 ③ 정사각형

해설

 $\angle BAD + \angle ADC = 180$  ° 이므로

 $\angle QAD + \angle ADQ = 90$  ° 이다. 따라서  $\angle AQD$ 에서  $\angle AQD = 180$ ° – 90° = 90° 마찬가지로  $\angle QRO = \angle ROP = \angle OPQ = 90^{\circ}$ : 직사각형

11. 다음 그림의 □ABCD는 평행사변형이다. 점 A, B 의 이등분선이  $\overline{BC},\ \overline{AD}$  와 만나는 점을 각각 E, F 라 하고,  $\overline{\mathrm{CD}}=7\mathrm{cm}$  일 때, □ABEF 의 둘레는?



① 25cm

② 26cm

③ 27cm

4 28cm

⑤ 29cm

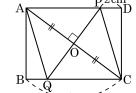
# $\square ABCD$ 는 평행사변형이므로 $2 \bullet + 2 \circ = 180^\circ$ 이고, $\bullet + \circ = 90^\circ$

이므로  $\overline{\mathrm{AE}} \bot \overline{\mathrm{BF}}$  이다. 따라서 □ABEF 는 마름모이다.

 $\overline{\mathrm{CD}}=\overline{\mathrm{AB}}=\overline{\mathrm{EF}}=\overline{\mathrm{BE}}=\overline{\mathrm{AF}}=7\mathrm{cm}$  이므로 둘레는  $4\times7=$ 

28(cm) 이다.

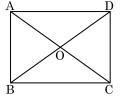
- ${f 12}$ . 다음 그림과 같은 평행사변형  ${f ABCD}$  에서  $\overline{\mathrm{AC}}\bot\overline{\mathrm{PQ}},\ \overline{\mathrm{AO}}=\overline{\mathrm{CO}}$ 일 때,  $\Box\mathrm{AQCP}$ 의 둘 레의 길이는?
  - 3 28 cm  $\bigcirc$  26 cm  $27\,\mathrm{cm}$  $\Im 30 \, \mathrm{cm}$



 $\overline{AQ} = \overline{AP} = \overline{PC} = \overline{QC}$  $\overline{AP} = 9 - 2 = 7$ 

따라서 28 cm 이다.

13. 다음 보기 중 그림과 같은 직사각형 ABCD 가 정사각형이 되도록 하는 조건을 모두 고르 면?



보기  $\bigcirc$   $\overline{AO} = \overline{DO}$  $\bigcirc$   $\overline{AB} = \overline{AD}$ 

 $\bigcirc$   $\angle DAB = \angle DCB$   $\bigcirc$   $\angle ABC = 90^{\circ}$ 

③ ⊜, □

**4** 7, ©

해설

① ①, 心

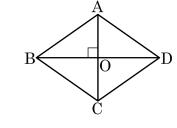
(5) (L), (E)

② ①, ©

직사각형에서 네 변의 길이가 모두 같거나. 두 대각선이 수직이

등분하면 정사각형이 된다.

14. 다음 그림과 같은 마름모 ABCD 가 정사각형이 되기 위한 조건을 모두 고르면?

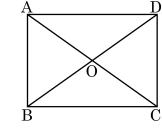


- ①  $\angle ABO = \angle CBO$ ③  $\overline{AC} = \overline{BD}$
- $\textcircled{4} \angle OAD = \angle ODA$

②  $\overline{\mathrm{BO}} = \overline{\mathrm{DO}}$ 

정사각형은 네 변의 길이가 같고 네 각이 90°로 모두 같아야한다.

15. 다음 그림의 직사각형 ABCD 가 정사각형이 되기 위한 조건을 모두 고르면? (정답 2 개)



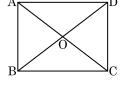
 $\overline{\text{(1)}}\overline{\text{AB}} = \overline{\text{BC}}$   $\bigcirc$   $\overline{AC} = \overline{BD}$  $4 \triangle AOB = \angle AOD$ 

해설

①  $\overline{AB} = \overline{DC}$  ,  $\overline{BC} = \overline{AD}$  이고,  $\overline{AB} = \overline{BC}$  이면 네 변의 길이가 모두 같고, 네 각의 크기가 모두 같으므로 정사각형이다. ④  $\angle AOB = \angle AOD$  일 때,  $\triangle AOB$ 와  $\triangle AOD$ 에서  $\overline{AO}$ 는 공통,  $\overline{\mathrm{BO}} = \overline{\mathrm{DO}}$  ,  $\angle \mathrm{AOB} = \angle \mathrm{AOD} = 90^{\circ}$  이므로  $\triangle \mathrm{AOB} \equiv \triangle \mathrm{AOD}$ (SAS 합동) 대응변의 길이가 같으므로  $\overline{\mathrm{AB}} = \overline{\mathrm{AD}}$ 평행사변형에서  $\overline{AB}=\overline{DC}$  ,  $\overline{AD}=\overline{BC}$  이므로  $\overline{AB}=\overline{BC}=$  $\overline{\mathrm{CD}} = \overline{\mathrm{DA}}$ 따라서 네 변의 길이가 모두 같고 네 내각의 크기가 모두 같으므 로 정사각형이다.

- 16. 다음 그림과 같은 직사각형 ABCD 가 정사각 형이 되기 위한 조건은?

①  $\overline{AB} = \overline{AC}$ 

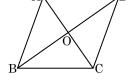


- $\bigcirc$   $\angle AOB = 90^{\circ}$
- ② ∠A = 90°
- $\bigcirc$   $\angle CDA = \angle ACB$

직사각형이 정사각형이 되려면 네 변의 길이가 모두 같거나 두

대각선이 서로 수직이등분하면 된다. 따라서 ∠AOB = 90°이다.

17. 다음 그림과 같은 평행사변형 ABCD 에서 ∠OAB = ∠OBA = ∠OBC 이면 □ABCD 는 어떤 사각형이 되는지 구하여라.



- ① 사다리꼴
   ② 직사각형

   ③ 정사각형
   ④ 마름모
- ⑤ 평행사변형

해설

 $\square ABCD$  는 평행사변형이므로  $\overline{AO}=\overline{CO}$  ,  $\overline{BO}=\overline{DO}$  ,  $\overline{AB}=\overline{DC}$  ,  $\overline{AD}=\overline{BC}$  이다.

ΔOAB 는 이등변삼각형이므로

OA = OB ⇔ OA = OB = OC = OD → □ABCD 는 직사각형

∠OBA = ∠ODC 이므로

 $\overline{\mathrm{BC}} = \overline{\mathrm{DC}} \Leftrightarrow \overline{\mathrm{AB}} = \overline{\mathrm{BC}} = \overline{\mathrm{CD}} = \overline{\mathrm{DA}}$ 

→□ABCD 는 마름모 ∴ □ABCD 는 직사각형이자 마름모 이므로 정사각형이다.

18. 평행사변형 ABCD 의 대각선 AC 위에 두 점 E , F 를 각각  $\overline{AE} = \overline{EO}$  ,  $\overline{OF} = \overline{FC}$  가 되게 잡을 때, 평행사변형 ABCD 의 넓이는 평행사변형 EBFD 의 넓이의 몇 배인지 구 하여라.

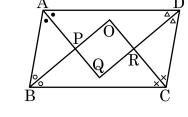
배 ▶ 답:

▷ 정답: 2<u>배</u>

 $\triangle AOB \equiv \triangle DOC \ \circ | \ \overrightarrow{\mathcal{I}} \ \triangle AOD \equiv \triangle BOC$  $\overline{AO} = 2\overline{EO}$  이므로  $\triangle AOD = 2\triangle EOD$  가 된다.

같은 방법으로  $\Delta \mathrm{DOC} = 2\Delta \mathrm{DOF}$  ,  $\Delta \mathrm{OBC} = 2\Delta \mathrm{OBF}$  ,  $\Delta \mathrm{AOB} =$ 2△EOB 가 된다. 따라서 전체 평행사변형 ABCD의 넓이는 평행사변형 EBFD 의 넓이의 2 배가 된다.

19. 평행사변형 ABCD 의 네 각의 이등분선의 교점으로 만들어지는 사각 형 OPQR는 어떤 사각형인가?



① 평행사변형 ④ 직사각형

해설

- ② 마름모 ⑤ 정사각형
- ③ 등변사다리꼴

∠BAD + ∠ADC = 180°이므로

 $\angle QAD + \angle ADQ = 90^{\circ}$  $\triangle AQD$   $\circ ||A| \angle AQD = (180 - 90)^{\circ} = 90^{\circ}$ 

마찬가지로  $\angle QRO = \angle ROP = \angle OPQ = 90^{\circ}$ 

:. 직사각형

 $oldsymbol{20}$ . 직사각형  $oldsymbol{\mathrm{ABCD}}$  에서 어두운 도형의 넓이는

① 22

②24 ③ 26 ④ 28

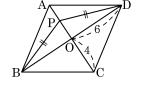
⑤ 30

 $\overline{AE} = \overline{FC}$  ,  $\overline{AE} \, / \! / \, \overline{FC}$  하므로

해설

□AFCE 는 평행사변형이다.  $\overline{\mathrm{CF}} = 4$  이므로  $\square\mathrm{AFCE} = 4 \times 6 = 24$ 

21. 다음 그림의  $\square ABCD$  은 평행사변형이다. 대 각선 AC 위의 한 점 P 에 대하여  $\overline{BP} = \overline{DP}$ 일 때, □ABCD 의 넓이를 구하여라.

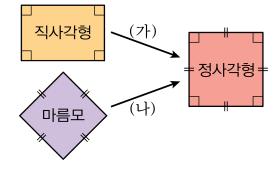


답:

▷ 정답: 48

 $\overline{\mathrm{OP}}$  는 공통,  $\overline{\mathrm{BO}} = \overline{\mathrm{DO}}$  이고  $\overline{\mathrm{BP}} = \overline{\mathrm{DP}}$  이므로  $\Delta \mathrm{BPO} \equiv \Delta \mathrm{DPO}$ (SSS 합동)  $\triangle APB$  와  $\triangle ADP$  에서  $\overline{AP}$  는 공통이고  $\overline{\mathrm{BP}} = \overline{\mathrm{DP}}$  이고,  $\angle APB = \angle APD$  이므로  $\triangle APD \equiv \triangle APB$  (SAS 합동) 따라서 ∠PAB = ∠PAD 이다. 따라서 □ABCD 는 마름모이고, ∠AOD = 90°이므로 넓이는  $\frac{1}{2} \times 4 \times 6 \times 4 = 48$  이다.

22. 다음 그림에서 정사각형이 되기 위해 추가되어야 하는 (가), (나)의 조건으로 알맞은 것을 고르면?



(나) 두 대각선이 서로 수직이다. ② (가) 두 대각선의 길이가 같다.

① (가) 이웃하는 두 각의 크기가 같다.

- (나) 한 내각의 크기가 90°이다. ③ (가) 두 대각선이 서로 수직이다.
- (나) 이웃하는 두 변의 길이가 같다. ④ (가) 두 대각선의 길이가 같다.
- (나) 이웃하는 두 변의 길이가 같다.
- ⑤ (가) 두 대각선이 서로 수직이다. (나) 이웃하는 두 각의 크기가 같다.

## 여러 가지 사각형의 대각선의 성질

해설

(1) 평행사변형의 두 대각선은 서로 다른 것을 이등분한다.

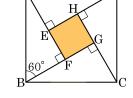
이등분한다.

- 분한다.
- (3) 마름모의 대각선은 서로 다른 것을 수직이등분한다. (4) 정사각형의 두 대각선은 길이가 같고, 서로 다른 것을 수직

(2) 직사각형의 두 대각선은 길이가 같고, 서로 다른 것을 이등

- (5) 등변사다리꼴의 두 대각선은 길이가 같다.

**23.** 정사각형 ABCD 에서 ∠ABF = 60° 이고,  $\overline{\mathrm{BF}}=\overline{\mathrm{CG}}=\overline{\mathrm{DH}}=\overline{\mathrm{AE}}$  가 되도록 E, F, G, H 를 잡았을 때, 사각형 EFGH는 어떤 사각형 인지 말하여라.



▷ 정답: 정사각형

▶ 답:

해설

사각형 EFGH 에서  $\angle$ AEH = 90° 이므로  $\angle$ HEF = 90° 이고,  $\overline{\rm EF}=\overline{\rm FG}=\overline{\rm GH}=\overline{\rm EH}$  이므로 정사각형이다.

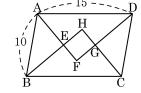
# **24.** 다음 중 □ABCD 가 평행사변형이 되는 것은?

- ①  $\overline{AO} = 3 \text{cm}, \ \overline{CO} = 4 \text{cm}, \ \overline{DO} = 4 \text{cm}, \ \overline{BO} = 3 \text{cm} \ (단, \ A \ O \ 는 두 대각선의 교점)$ ②  $\angle A = 150^\circ, \ \angle B = 30^\circ, \ \angle C = 150^\circ$
- $\overline{AB} = 10 \text{cm}, \overline{AD} = 10 \text{cm}, \overline{BC} = 8 \text{cm}, \overline{CD} = 8 \text{cm}$
- ⑤  $\angle A = 110^{\circ}, \angle C = 110^{\circ}, \angle D = 60^{\circ}$

② ∠D = 360° - (150° + 30° + 150°) = 30°이므로 ∠A = ∠C,

해설

∠B = ∠D이다. 따라서 □ABCD는 평행사변형이다. **25.** 평행사변형 ABCD 의 네 각의 이등분선 으로 만들어진  $\square EFGH$  에서  $\overline{AB}=10$  ,  $\overline{\mathrm{AD}}=15$  ,  $\overline{\mathrm{EG}}=5$  일 때,  $\overline{\mathrm{HF}}$  의 길이를 구하여라.



▶ 답:

정답: 5

해설

 ${\it \angle A} + {\it \angle B} = 180\,^{\circ}, \; {\it \angle C} + {\it \angle D} = 180\,^{\circ}, \; \frac{1}{2}({\it \angle A} + {\it \angle B}) = 90\,^{\circ}, \; \frac{1}{2}({\it \angle C} +$  $\angle D) = 90^{\circ}$  $\angle AEB = \angle CGD = 90^{\circ}$ 

맞꼭지각으로 ∠FEH = ∠FGH = 90°

마찬가지의 방법으로  $\angle EHG = \angle EFG = 90^\circ$ □EFGH 는 직사각형이다.

 $\therefore \overline{EG} = \overline{HF} = 5$