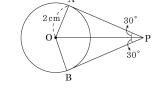

1. 다음 그림에서 $\angle A = 70^{\circ}$ 일 때, $\angle B$ 의 크기는?

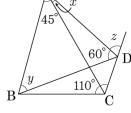

① 55° ② 60° ③ 65° ④ 70° ⑤ 75°

원의 중심에서 접선까지의 거리가 같으므로 $\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$ $\Delta \mathrm{ABC}$ 는 이등변삼각형이므로,

 $\angle B = (180^{\circ} - 70^{\circ}) \div 2 = 55^{\circ}$

해설

다음 그림에서 $\overline{\mathrm{PA}}$, $\overline{\mathrm{PB}}$ 는 원 O 의 접선일 때, $\square\mathrm{APBO}$ 의 둘레의 **2**. 길이는?



- ① 6cm
- ② $(6+6\sqrt{2})$ cm $(4+4\sqrt{3})$ cm $(8+6\sqrt{3})$ cm
 - $3 12\sqrt{3}$ cm

해설

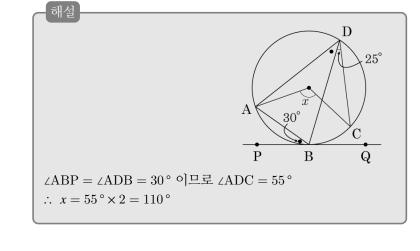
 $\sqrt{3} \ \overline{OA} = \overline{AP} = 2\sqrt{3} \text{ cm}$ $\therefore (2 + 2\sqrt{3}) \times 2 = (4 + 4\sqrt{3}) \text{cm}$

3. 다음 그림에서 □ABCD 가 원에 내접할 때, $\angle x + \angle y + \angle z$ 의 값은?

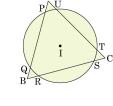
⑤ 110°

①150° ② 140° ③ 130° ④ 120°

x = 180° - (110° + 45°) = 25° y = 180° - (60° + 45° + 25°) = 50°


 $z = y + \angle DBC = y + x = 75^{\circ}$ $\therefore x + y + z = 150^{\circ}$

해설

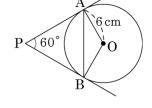

- 다음 그림에서 직선 PQ 가 원 O 의 접선 4. 이고 점 B 가 접점일 때, ∠AOC 의 크기 는?
 - ① 95° ② 100°
 - 4 110° ⑤ 115°
 - 30° x / 3105° P В

25°

O

5. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이며 원의 중심이다. $\overline{PQ}=8cm$ 일 때, \overline{RS} 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$


▷ 정답: 8 cm

답:

해설

삼각형의 내심에서 세 변에 이르는 거리는 같다. 중심과의 거리 가 같은 현의 길이는 모두 같으므로 $\overline{PQ}=\overline{RS}=8(cm)$ 이다.

다음 그림에서 \overline{PA} , \overline{PB} 는 원 O 의 접선이 6. 다. $\angle P = 60^{\circ}$, $\overline{OA} = 6 \mathrm{cm}$ 일 때, $\triangle ABP$ 의 넓이는?

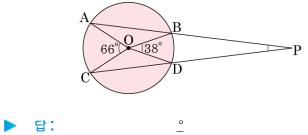
- $40\sqrt{3}$ cm²
- $27\sqrt{3}$ cm² \bigcirc 54cm²
- $3 12 \sqrt{6} \text{cm}^2$

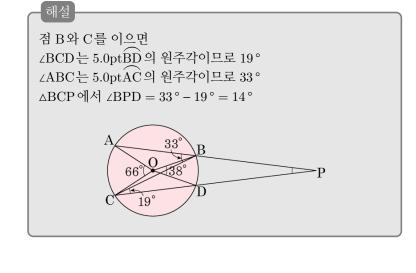
해설

$\overline{\mathrm{PA}} = \overline{\mathrm{PB}}$ 이므로 $\triangle \mathrm{ABP}$ 는 모든 각

의 크기가 같은 정삼각형이다.

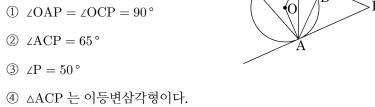
 $\overline{\mathrm{PO}}$ 를 그으면 위와 같은 그림이 된다. 따라서 $\overline{\mathrm{PA}}:\overline{\mathrm{AO}}=1:\sqrt{3}=6:\overline{\mathrm{PA}}$ 이다.


 $\therefore \overline{PA} = 6\sqrt{3} \text{ cm}, \ \frac{\sqrt{3}}{4} \times (6\sqrt{3})^2 = 27\sqrt{3} (\text{cm}^2)$


- AE의 길이는 4 cm 이다.
 DH 의 길이의 길이는 8 cm 이다.
- ③ GI = 2 cm 이다.
- $\overline{\text{(4)}}\overline{\text{CI}} = 4 \, \text{cm}$ 이다.
- ⑤ △CDI의 넓이는 24 cm² 이다.

③ GI = x 라 할 때, CI 의 길이는 CI = (8 - x) cm, DI = (8 + x) cm 이므로 피타고라스의 성질에 의해 (8 + x)² = 8² + (8 - x)² ∴ x = 2 cm ④ CI = 8 - x = 6 ⑤ ½ × 6 × 8 = 24(cm²)

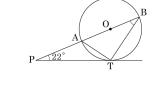
8. 다음 그림에서 점 $P \leftarrow O$ 의 두 현 AB, CD 의 연장선이 만나는 점이 다. ∠BPD 의 크기를 구하여라.



▷ 정답: 14 _º

- 다음 그림에 대한 설명 중 옳지 <u>않은</u> 것 9.
 - ② $\angle ACP = 65^{\circ}$

 - \bigcirc $\angle P = 50^{\circ}$
 - ③ ∠ADC의 크기는 120° 이다.



□ABCD 는 내접사각형이므로

해설

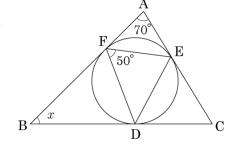
 $\angle ABC + \angle ADC = 180^{\circ}$ \therefore $\angle ADC = 115^{\circ}$

10. 다음 그림에서 $\angle BPT = 22^{\circ}$ 일 때, $\angle ABT$ 의 크기를 구하면?

① 30° ② 32°

④ 36° ⑤ 38°

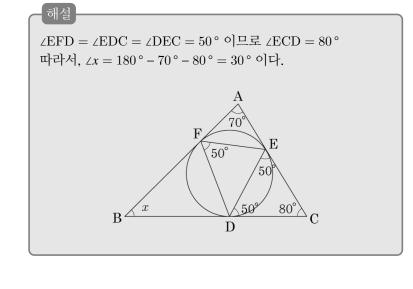
 $\angle PTA = \angle x$ 라 하면

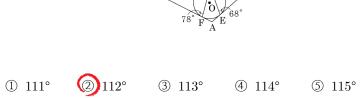

해설

 $\angle BAT = 22^{\circ} + \angle x$ △ABT 에서

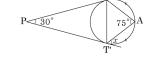
 $22^{\circ} + \angle x + \angle x = 90^{\circ}$

 $2\angle x = 68^{\circ}$ $\angle x = 34^{\circ}$


11. 다음 그림과 같이 △ABC 의 내접원과 ΔDEF 의 외접원 이 같을 때, ∠ABC 의 크기 는?


①30°

② 35° ③ 40°


④ 45° ⑤ 50°

12. 그림과 같이 원 O 가 \triangle ABC 에 내접할 때, \angle A 의 크기로 바른 것은?

 $\angle BDF = 78^{\circ}$ $\therefore \angle B = 24^{\circ}$ $\angle EDC = 68^{\circ}$ $\therefore \angle C = 44^{\circ}$ $\therefore \angle A = 180^{\circ} - 24^{\circ} - 44^{\circ} = 112^{\circ}$ 13. 다음 그림에서 $\overline{\text{PT}}$, $\overline{\text{PT'}}$ 는 원의 접선이고 $5.0 \overline{\text{ptAT}} = 5.0 \overline{\text{ptAT'}}$ 일 때, $\angle x$ 의 값을 구하여라.

 답:

 ▷ 정답:
 52.5°

 $\angle TT'A = \angle T'TA = \angle x$ 이므로 $180^{\circ} - 2\angle x = 75^{\circ}$

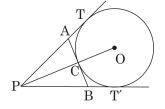
 $2\angle x = 105^{\circ}$ $\angle x = 52.5^{\circ}$

14. 다음 그림과 같이 두 점 A, B 에서 만나는 두 원 O, O' 에 공통인 접선을 긋고, 두 원과의 접점을 각각 P, Q 라고 하자. \angle APB = 36° , \angle AQB = 70° 일 때, \angle PAQ 의 크기를 구하여라.

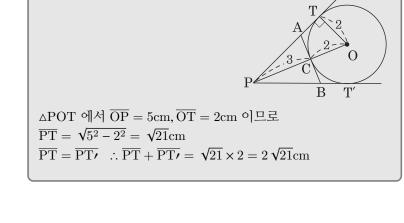
 답:

 ▷ 정답:
 37 ≗

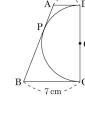
_


 $\angle PAB = a$, $\angle QAB = b$ 라 하면

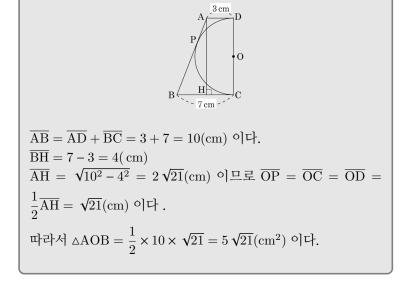
 $\angle BPQ = \angle PAB = a$ $\angle BQP = \angle QAB = b$

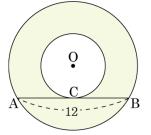

 $\Delta {
m APQ}$ 는 내각의 합이 180° 이므로 $a+b+36^\circ+a+b+70^\circ=180^\circ$ 이다.

따라서 $a+b=37^\circ$ 이므로 $\angle PAQ=37^\circ$ 이다.


15. 다음 그림에서 원 O 는 ĀB 와 점 C 에서 접하고, PĀ 와 PB 의 연장선과 두 점 T, T 에서 각각 접한다. PC = 3cm, CO = 2cm 일 때, PT+PT 의 값은?

- ① $\frac{\sqrt{21}}{2}$ cm ④ $\sqrt{29}$ cm
- ② √21cm
- $3 2\sqrt{21} \text{cm}$
- **V2**501
- $\Im 2\sqrt{29} \text{cm}$


16. 다음 그림에서 점 A , B 는 원 O 위의 한 점 P 에서 그은 접선과 지름의 양 끝점 C, D 에서 그은 접선이 만나는 점이다. $\overline{AD}=3 \mathrm{cm}, \ \overline{BC}=7 \mathrm{cm}$ 일 때, ΔAOB 의 넓이를 구하여라.

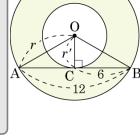

 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $5\sqrt{21}$ cm^2

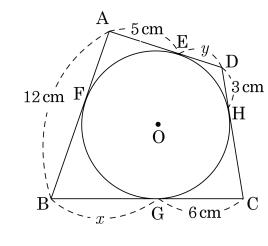
▶ 답:

17. 다음 그림과 같이 두 개의 동심원이 있 다. 큰 원의 현 AB 가 작은 원에 접하고, $\overline{\mathrm{AB}}=12$ 일 때, 색칠한 부분의 넓이를 구 하면?

① 20π ② 25π ③ 30π ④ 36π


 \bigcirc 40π

큰 원의 반지름의 길이를 r, 작은 원의

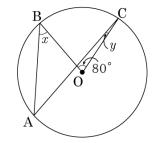

해설

반지름의 길이를 n이라고 하자. \overline{AB} 는 작은 원의 접선이므로 $\overline{\mathrm{OC}} \bot \overline{\mathrm{AB}}, \ \overline{\mathrm{AC}} = \frac{1}{2} \overline{\mathrm{AB}} = 6$ 직각삼각형 \triangle ACO 에서 $r^2 - rr^2 = 6^2$

(색칠한 부분의 넓이)= $\pi r^2 - \pi r r^2 =$ $\pi(r^2-rr^2)=36\pi$

18. 다음 그림과 같이 \square ABCD가 원 O에 외접할 때, x+y의 값은?

10 2 11 ③ 12 4 13 ⑤ 14

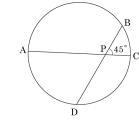

 $\overline{AF} = \overline{AE} = 5(cm)$ $\overline{\mathrm{DH}} = \overline{\mathrm{ED}} = 3(\mathrm{cm})$

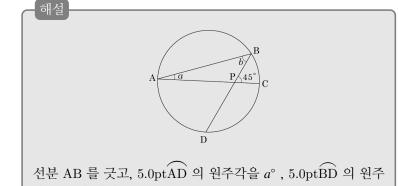
해설

 $\overline{\mathrm{BF}} = \overline{\mathrm{BG}} = 7(\mathrm{cm})$

따라서 x = 7(cm), y = 3(cm)

- **19.** 다음 그림에서 ∠BOC = 80°이고, ∠ABO = x, ∠ACO = y 일 때, x와 y 의 관계식으로 올바른 것은?
 - ① $x + y = 65^{\circ}$ ② $x y = 50^{\circ}$ ③ $x - y = 35^{\circ}$ ④ $x = y + 45^{\circ}$
 - $x y = 40^{\circ}$
- ·
 - (y)x y =

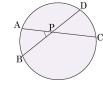

 $\angle BAC = 40^{\circ},$ $x + \angle BAC = y + \angle BOC$


해설

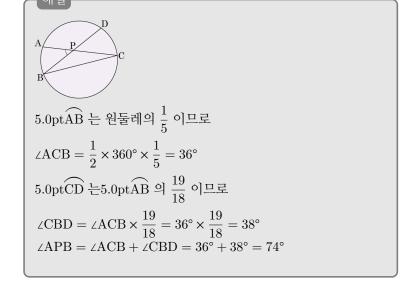
x + 2BAC = y + 2D $x + 40^{\circ} = y + 80^{\circ}$

 $\therefore x - y = 40^{\circ}$

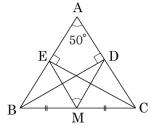
20. 다음 그림의 원에서 두 현 AC, BD 의 교점을 P 라 하자. $\angle BPC = 45^{\circ}$ 일 때, 5.0 ptAD + 5.0 ptBC 의 길이는 이 원의 둘레의 길이의 몇 배인 가?



각을 b° 라 하면 $a^{\circ} + b^{\circ} = 45^{\circ}$ 5.0pt $\widehat{AD} + 5.0$ pt \widehat{BC} 의 원주각의 합이 45° 이므로 그들의 중심 각의 합은 90° 이다. 따라서 원의 둘레는 호의 길이에 비례하므로 $90^\circ=360^\circ imes \frac{1}{4}$


이다.

21. 다음 그림에서 $5.0 ext{ptAB}$ 의 길이는 원주의 $\frac{1}{5}$ 이고, $5.0 ext{ptCD}$ 의 길이는 $5.0 ext{ptAB}$ 의 $\frac{19}{18}$ 일 때, $\angle APB$ 의 크기를 구하여라.



답:

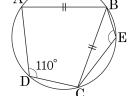
▷ 정답: 74 °

22. 다음 그림의 $\triangle ABC$ 에서 점 M 은 \overline{BC} 의 중점이고, $\overline{AB}\bot\overline{CE}$, $\overline{AC}\bot\overline{BD}$ 이다. $\angle A = 50\,^{\circ}$ 일 때, $\angle EMD$ 의 크기를 구하 면?

① 40° ② 50° ③80°

④ 85°

⑤ 90°


 $\angle BEC = \angle BDC$ 이므로 네 점 B, C, D, E 는 한 원 위에 있고,

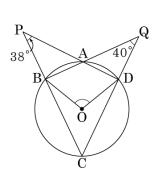
해설

 $\overline{\mathrm{BM}} = \overline{\mathrm{CM}}$ 이므로 점 M 은 원의 중심이다. $\Delta\mathrm{ABD}$ 에서 $\angle ABD = 90^{\circ} - 50^{\circ} = 40^{\circ}$ 따라서 $\angle \text{EMD} = 2\angle \text{EBD} = 2 \times 40^{\circ} = 80^{\circ}$ 이다.

23. 다음 그림과 같이 사각형 ABCD 의 외접원 위의 호 AD 위에 점 E 를 잡을 때, ĀB = BC , ∠D = 110° 이면 보기에서 옳지 <u>않은</u> 것을 골라라.

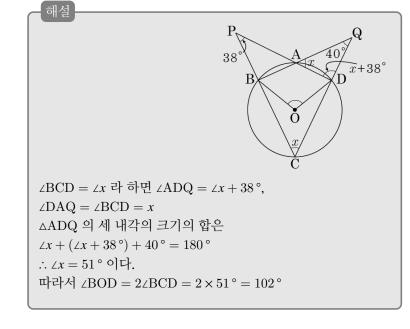
보기

© ∠ABC = 70°이다.


① ∠BAC = ∠BCA 이다.

- © 2ADC = 10 15
- © △ABC 에서 ∠BAC = 55°이다. ② ∠BEC + ∠BCA = 180°이다.
- □ ∠BEC = 115°이다.
- ▶ 답:

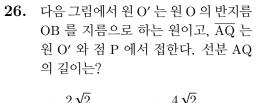
▷ 정답: ⑩


 $35\degree = 125\degree$

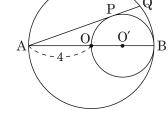
24. 다음 그림에서 \square ABCD 는 원 O 에 내접 하고 $\angle \mathrm{DPC} = 38\,^\circ$, $\angle \mathrm{BQC} = 40\,^\circ$ 일 때, ∠BOD 의 크기는?

① 78° ② 82° ③ 90° ④ 98°

⑤ 102°

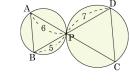

25. 다음 중 □ABCD 가 원에 내접하는 경우가 <u>아닌</u> 것은?

- ② $\angle B = \angle C$, $\overline{AD} // \overline{BC}$ ③ $\angle BAC = \angle BDC$
- © 2B110 2B2
- ⑤ \overline{AC} 와 \overline{BD} 의 교점 P에 대하여 $\overline{PA} \times \overline{PC} = \overline{PB} \times \overline{PD}$


① ∠A = 180° - ∠C 일 때, 원에 내접한다.

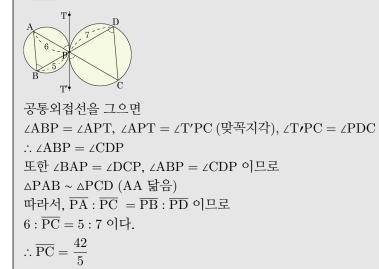
해설

- ② AD // BC 이므로 ∠A + ∠B = 180° 또 ∠B = ∠C 이므로 ∠A + ∠C = 180°
- 또, ∠B = ∠C 이므로 ∠A + ∠C = 180° 따라서 □ABCD 는 원에 내접한다.

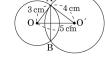

지
$$\overline{AP}^2 = 4 \times 8$$
 $\overline{AP} = 4\sqrt{2}$
 $\triangle APO' \hookrightarrow \triangle AQB 에서$
 $6: 8 = 4\sqrt{2}: \overline{AQ}$
 $\overline{AQ} = \frac{8 \times 4\sqrt{2}}{6} = \frac{16\sqrt{2}}{3}$

27. 다음 그림에서 \overline{AC} 는 원 O 의 지름이고 \overrightarrow{BP} 는 원 O 의 접선이다. $\overline{BD}=\overline{AB}$ 이고, $\angle DBC=28^\circ$ 일 때, $\angle CBP$ 의 크기를 구하여라.

답: ▷ 정답: 31 º


 $\angle ABD = 90^{\circ} - 28^{\circ} = 62^{\circ}$ $\angle BAD = \angle BDA = \frac{1}{2}(180^{\circ} - 62^{\circ}) = 59^{\circ}$ $\angle CBP = \angle DBP - 28^{\circ} = \angle BAD - 28^{\circ} = 31^{\circ}$

 ${f 28}.$ 다음 그림과 같이 점 P 에서 접하는 두 원에 대하여 $\overline{
m AP}=6,\;\overline{
m BP}=$ 5, $\overline{DP} = 7$ 일 때, \overline{PC} 의 길이는?



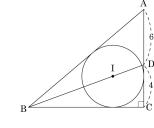
① 6 ② $\frac{16}{3}$ ③ $\frac{12}{5}$

⑤ 7

29. 다음 그림과 같이 반지름의 길이가 각각 3 cm, 4 cm 인 두 원이 두 점 A, B에서 만나고 중심 사이의 거리가 5cm 일 때, 공통현 AB 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

▷ 정답: 4.8 cm


답:

 $\triangle OAO'$ 에서 $\overline{OA}^2 + \overline{O'A}^2 = \overline{OO'}^2$ 이므로 $\angle A = 90^\circ$ 점 A 에서 $\overline{OO'}$ 에 내린 수선의 발을 H 라 하면 $\triangle AOO' = \frac{1}{2}\overline{OA} \times \overline{O'A} = \frac{1}{2}\overline{OO'} \times \overline{AH}$

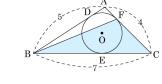
 $\stackrel{\sim}{\lnot}, \, \overline{\mathrm{OA}} \times \overline{\mathrm{O'A}} = \overline{\mathrm{OO'}} \times \overline{\mathrm{AH}}$ $3 \times 4 = 5\overline{AH}, \overline{AH} = 2.4 \text{ (cm)}$

 $\therefore \overline{AB} = 2\overline{AH} = 4.8 \, (cm)$

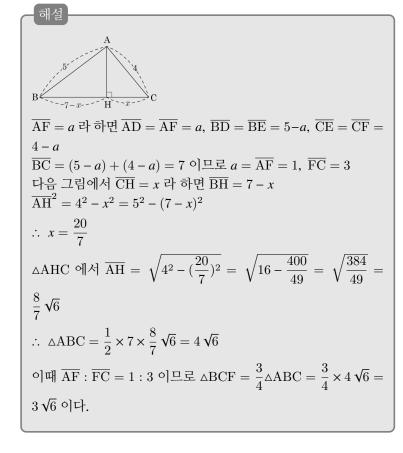
 ${f 30}$. 다음 그림에서 ΔABC 의 내심을 ${f I}$ 라 하고, ${f BI}$ 의 연장선이 ${f AC}$ 와 만나는 점을 D 라 할 때, $\overline{AD}=6,\overline{CD}=4$ 이다. 내접원의 반지름의 길이를 구하여라.

▶ 답: ightharpoonup 정답: $5-\sqrt{5}$

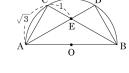
 $\overline{\mathrm{BD}}$ 가 $\angle\mathrm{ABC}$ 의 이등분선이므로 $\overline{\mathrm{AB}}:\overline{\mathrm{BC}}=\overline{\mathrm{AD}}:\overline{\mathrm{CD}}=6:$


4 = 3:2 $\overline{\mathrm{AB}}=3a,\overline{\mathrm{BC}}=2a$ 로 놓으면

 $9a^2 = 4a^2 + 100$ $5a^2 = 100$ $a = 2\sqrt{5}(\because a > 0)$


 $\frac{1}{2} \times 10 \times 4\sqrt{5} = \frac{1}{2} \times r \times (10 + 10\sqrt{5})$

 $\therefore r = 5 - \sqrt{5}$

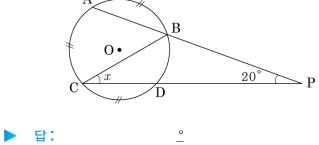

31. 다음 그림에서 원 O 는 \triangle ABC 의 내접원이고 점 D, E, F 는 접점이다. $\overline{AB}=5, \ \overline{BC}=7, \ \overline{AC}=4$ 일 때, \triangle BCF 의 넓이를 구하여라.

답:
 > 정답: 3√6

 ${f 32}$. 다음 그림과 같이 지름이 ${f AB}$ 인 반원에서 점 ${f C},\ {f D}$ 는 원주 위의 점이고, $\angle BAD = \angle CAD$ 이다. \overline{AD} 와 \overline{BC} 의 교점을 E 라 하고, $\overline{AC} = \sqrt{3}, \ \overline{CE} = 1$ 일 때, \overline{AB} 의 길이를 구하여라.

▶ 답: ightharpoonup 정답: $2\sqrt{3}$

 $\triangle ACE$ 에서 $\overline{AC}=\sqrt{3},\ \overline{CE}=1$ 이고,


∠ECA = 90° 이므로 $\overline{\mathrm{AE}} = 2$, $\angle \mathrm{CAE} = \angle \mathrm{BAE} = 30^{\circ}$

또, △ABE 에서

 $\overline{AE} = \overline{BE} = 2$, $\overline{DE} = 1$, $\overline{BD} = \sqrt{3}$

 $\therefore \overline{AB} = \sqrt{\overline{AD}^2 + \overline{BD}^2} = \sqrt{3^2 + \sqrt{3}^2} = 2\sqrt{3}$

33. 다음 그림에서 $5.0 pt\widehat{AB} = 5.0 pt\widehat{AC} = 5.0 pt\widehat{CD}$, $\angle BPD = 20$ ° 일 때, *x* 의 값을 구하여라.

▷ 정답: 30 º

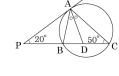
i) 5.0pt $\widehat{\mathrm{BD}}$ 의 원주각이 x 이므로 $\angle\mathrm{BOD} = 2x$

해설

- ii) △BCP 에서 ∠ABC = 20°+x°이므로
- $\angle AOC = 40^{\circ} + 2x^{\circ}$ iii) $3(40^{\circ} + 2x) + 2x = 360^{\circ}$
- $120^{\circ} + 8x = 360^{\circ} \qquad \therefore x = 30$

34. 원 O 에 내접하는 정오각형 ABCDE 에서 대각선 AC 와 BE 의 교점을 P 라 할 때, $\overline{\rm AP}=2$ 이다. 이때, 선분 CP 의 길이를 구하여라.

답:
 ▷ 정답: 1+√5


∠BAC = ∠BCA = ∠ABE = $\frac{1}{5} \times 180 = 36^{\circ}$ ∴ △ABC \hookrightarrow △APB

또 ∠CPB = ∠CBE = 72° 이므로 \overline{BC} = \overline{CP} ,

 $\overline{AP} = 2$, $\overline{CP} = x$ 라 하면 x : (2+x) = 2 : x $x = \overline{CP} = 1 + \sqrt{5}$

 $x = CP = 1 + \sqrt{s}$

35. 다음 그림에서 \overrightarrow{PA} 는 원의 접선이고, $\angle BAD = \angle CAD$ 이다. $\angle APB = 20^\circ$, $\angle ACB = 50^\circ$ 일 때, $\angle ADP$ 의 크기를 구하여라.

▷ 정답: 80 °

▶ 답:

 $\angle PAB = \angle ACB = 50^{\circ}$

해설

△APB 에서

 $\angle ABC = \angle APB + \angle PAB = 20^{\circ} + 50^{\circ} = 70^{\circ}$

△ABC 에서 ∠BAC = 180° - (∠ABC + ∠ACB)

= $180^{\circ} - (70^{\circ} + 50^{\circ}) = 60^{\circ}$ $\angle DAC = \frac{1}{2} \angle BAC = 30^{\circ}$

 $\therefore \angle ADP = \angle DAC + \angle ACB = 30^{\circ} + 50^{\circ} = 80^{\circ}$

.....