$$1. \qquad \sqrt{a^2} = 4 \ \text{일 때, } a \ \text{의 값을 구하여라.}$$

애설
양변을 제곱하면,
$$a^2 = 16$$

∴ $a = \pm 4$

2

다음 중 제곱근을 구할 수 있는 수를 모두 고르면?

$$-4$$

$$(7 의 제곱근) = \pm \sqrt{7}, (3 의 제곱근) = \pm \sqrt{3}$$
 제곱해서 음수가 되는 수는 없으므로 음수의 제곱근은 없다.

- **3.** 9 의 제곱근 중 작은 수와 25 의 제곱근 중 큰 수의 합을 구하여라.
 - 답:
 - ▷ 정답: 2

- 9 의 제곱근: ±3
- 25 의 제곱근 : ±5
- 9 의 제곱근 중 작은 수와 25 의 제곱근 중 큰 수의 합은 -3+5 = 2

4. 다음 중 근호를 사용하지 않고 나타낼 수 $\frac{1}{1}$ 것을 모두 골라라.

 $\bigcirc \sqrt{0.16}$ $\bigcirc \sqrt{0.4}$ $\bigcirc \sqrt{101}$ $\bigcirc \sqrt{9}$ $\bigcirc -\sqrt{\frac{4}{9}}$

- 답:
- ▶ 답:
- ▷ 정답: □
- ▷ 정답 : □

해설

- \bigcirc $\sqrt{0.16}$ 은 0.16의 양의 제곱근이므로 0.4이다.
- ① $\sqrt{0.4}$ 는 0.4 의 양의 제곱근이다. 근호를 사용하지 않고 나타 낼 수 없다.
- \bigcirc $\sqrt{101}$ 은 101 의 양의 제곱근이다. 근호를 사용하지 않고 나타낼 수 없다.
- (a) $-\sqrt{\frac{4}{9}}$ 는 $\frac{4}{9}$ 의 음의 제곱근이므로 $-\frac{2}{3}$ 이다.

5. 다음 표의 수 중 근호를 사용하지 않고 나타낼 수 있는 수들을 찾아 색칠한 후 이 수들이 나타내는 수를 아래쪽에 색칠하였을 때 두 그림이 나타내는 수를 말하여라.

$\sqrt{81}$	$\sqrt{100}$	$\sqrt{0}$	$\sqrt{0.01}$	$\sqrt{64}$
$\sqrt{9}$	$\sqrt{13}$	$\sqrt{28}$	√ -16	$\sqrt{25}$
$\sqrt{49}$	$\sqrt{15}$	$\sqrt{120}$	$\sqrt{20}$	$\sqrt{36}$
√-0.9	$\sqrt{18}$	$\sqrt{0.4}$	√-16	√0.09
$\sqrt{-36}$	$\sqrt{3}$	√ <u>-9</u>	√8	$\sqrt{4}$

-5	15	16	0	25
-10	-0.3	3	8	11
-1	6	-6	0.1	-4
7	10	2	0.3	9
-7	-10	-13	5	12

▶ 답:

▷ 정답: 74

해설						
√s	81	$\sqrt{100}$	$\sqrt{0}$	$\sqrt{0.01}$	$\sqrt{64}$	
✓	9	$\sqrt{13}$	$\sqrt{28}$	√ -16	$\sqrt{25}$	
<u>√</u>	49	$\sqrt{15}$	$\sqrt{120}$	$\sqrt{20}$	$\sqrt{36}$	
V-	0.9	$\sqrt{18}$	$\sqrt{0.4}$	$\sqrt{-16}$	$\sqrt{0.09}$	
√-	-36	$\sqrt{3}$	$\sqrt{-9}$	√8	$\sqrt{4}$	
-	-5	15	16	0	25	
-	10	-0.3	3	8	11	
-	-1	6	-6	0.1	-4	
	7	10	2	0.3	9	
-	-7	-10	-13	5	12	

6.
$$\sqrt{\sqrt{81}} - \sqrt{0.09} + \sqrt{(0.9)^2} - \sqrt{\frac{1}{16}}$$
 을 계산하면?

해설 (준식) =
$$3 - 0.3 + 0.9 - \frac{1}{4} = 3.35$$

7.
$$3 < x < 4$$
 일 때, $\sqrt{(3-x)^2} - \sqrt{(x-4)^2}$ 을 간단히 하면?

①
$$2x-1$$

②
$$2x - 3$$

$$3 2x - 5$$

4)2x - 7

$$(5) 2x - 9$$

$$3-x < 0$$
이고 $x-4 < 0$ 이므로 $(준식)=-(3-x)+(x-4)=2x-7$

8. x > 1 일 때, $\sqrt{(x-1)^2} - \sqrt{(1-x)^2}$ 의 값을 구하여라.

$$x > 1$$
 이므로 $x - 1 > 0$, $1 - x < 0$
(준식) $= (x - 1) - \{-(1 - x)\}$
 $= (x - 1) - (x - 1) = 0$

$$x > 2$$
 일 때, 다음 중 $\sqrt{(x-2)^2} - \sqrt{(2-x)^2}$ 의 값은?

$$x > 2$$
 이므로 $x - 2 > 0$, $2 - x < 0$
(준식) $= (x - 2) - \{-(2 - x)\}$
 $= (x - 2) - (x - 2) = 0$

10. $\sqrt{17+x}$ 의 값이 자연수가 되도록 하는 가장 작은 자연수 x 는?

① 4 ② 8 ③ 10 ④ 12 ⑤ 19

```
해설 \sqrt{25} 이므로 x = 8 이다.
```

11.
$$\sqrt{40-x}$$
 의 값이 자연수가 되도록 하는 가장 작은 자연수 x 는?

- 해성

4 10

12. 다음 중 가장 큰 수는?

 $\sqrt{(-7)^2}$

② $-(-\sqrt{3})^2$

 $\sqrt{3}$ $\sqrt{20}$

4 6

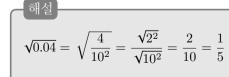
⑤ $\sqrt{45}$

① $7 = \sqrt{49}$

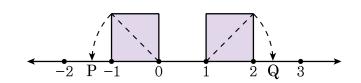
② -3 ③ $\sqrt{20}$

 $46 = \sqrt{36}$

- **13.** $2 \le \sqrt{2x} < 4$ 을 만족하는 자연수 x의 개수는?
 - ① 3 개 ② 4 개 ③ 5 개 ④ 6 개 ⑤ 7 개


해설
$$2 \le \sqrt{2x} < 4 \leftarrow 4 \le 2x < 16 \ \text{이다.} \ \text{따라서} \ 2 \le x < 8 \ \text{이므로}$$
 자연수 $x \leftarrow 2$, 3 , 4 , 5 , 6 , 7 로 6 개이다.

$${f 14.}$$
 보기 중에서 무리수인 것을 모두 찾으면 $?$


①
$$\sqrt{14}$$

$$\bigcirc$$
 $\sqrt{0.1}$

 $4 \sqrt{0.04}$

15. 다음 그림에서 수직선 위의 사각형은 정사각형이다. 이 때, 점 P(a), Q(b) 에서 a+b 의 값을 구하여라.

$$ightharpoonup$$
 정답: $a+b=1$

$$P(-\sqrt{2})$$
 , $Q(1 + \sqrt{2})$ 이므로 $a + b = -\sqrt{2} + 1 + \sqrt{2} = 1$

16. 보기는 두 실수 A. B 의 대소 관계를 비교하는 과정을 나타낸 것이다. 다음 과정 중 가장 먼저 틀린 것을 구하여라.

> $A = \sqrt{19} - \sqrt{11}$, $B = \sqrt{17} - \sqrt{13}$ \bigcirc A. B 는 양수이므로 $a^2 > b^2$ 이면 a > b 이다.

 $A^{2} - B^{2}$

$$= \bigcirc (\sqrt{19} - \sqrt{11})^2 - (\sqrt{17} - \sqrt{13})^2$$

$$= \bigcirc (19 - 2\sqrt{209} + 11) - (17 - 2\sqrt{221} + 13)$$

$$= \bigcirc -2\sqrt{209} - 2\sqrt{221} < 0$$

 \bigcirc : A < B

해설

$$A = \sqrt{19} - \sqrt{11}, B = \sqrt{17} - \sqrt{13}$$

A. B 는 양수이므로 $a^2 > b^2$ 이면 a > b 이다.

A, B는 양수이므로
$$a^2 > b^2$$
 이면 $a > b$ 이다.

$$A^2 - B^2$$

$$= (\sqrt{19} - \sqrt{11})^2 - (\sqrt{17} - \sqrt{13})^2$$

$$= (19 - 2\sqrt{209} + 11) - (17 - 2\sqrt{221} + 13)$$
$$= -2\sqrt{209} + 2\sqrt{221} > 0$$

∴ A > B

17. 다음 중
$$\sqrt{3}$$
 와 $\sqrt{11}$ 사이에 있는 무리수는?

①
$$\sqrt{3} - 1$$

 $4 \sqrt{3} + 3$

②
$$2\sqrt{3}$$
 ③ $\frac{\sqrt{3} + \sqrt{11}}{2}$

 $\sqrt{11} - 3$

의
$$2\sqrt{3} = \sqrt{12}, \sqrt{3} < \frac{\sqrt{3} + \sqrt{11}}{2} < \sqrt{11}$$