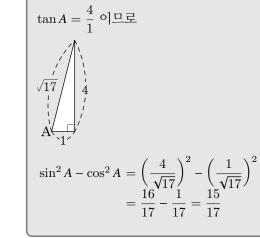

1. 다음 그림의 직각삼각형 ABC 에서 $\sin A$ 의 값을 구하여라.



$$ightharpoonup$$
 정답: $\frac{a}{c}$

$$\sin A =$$

2.
$$\tan A = 4$$
 일 때, $\sin^2 A - \cos^2 A$ 의 값을 구하여라. (단, $0^\circ < A < 90^\circ$

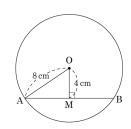
$$ightharpoonup$$
 정답: $rac{15}{17}$

3. $\sin 0^{\circ} \times \cos 60^{\circ} + \cos 0^{\circ} \times \tan 45^{\circ} - \sin 45^{\circ} \times \tan 60^{\circ} = ?$

①
$$1 - \frac{\sqrt{3}}{2}$$
 ② $1 + \frac{\sqrt{3}}{2}$ ③ $1 - \frac{\sqrt{3}}{2}$ ④ $1 + \frac{\sqrt{6}}{2}$

sin 0° × cos 60° + cos 0° × tan 45° - sin 45° × tan 60°
$$=0 \times \frac{1}{2} + 1 \times 1 - \frac{\sqrt{2}}{2} \times \sqrt{3}$$

$$\sqrt{6}$$


다음 삼각비의 표를 보고 $\sin x = 0.6691$ 일 때, x 의 값은?

각도	사인(sin)	코사인(cos)	탄젠트(tan)
39°	0.6293	0.7771	0.8098
40°	0.6428	0.7660	0.8391
41°	0.6561	0.7547	0.8693
42°	0.6691	0.7431	0.9004

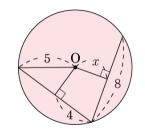
①
$$39^{\circ}$$
 ② 40° ③ 41°

 $\sin 42^{\circ} = 0.6691$

 $\mathbf{5}$. 다음 그림에서 현 $\overline{\mathrm{AB}}$ 의 길이를 구하여라.

① $7\sqrt{3}$ cm

 \bigcirc 8 $\sqrt{3}$ cm


 $3 9\sqrt{3} \text{ cm}$

 $4 10 \sqrt{3} \text{ cm}$

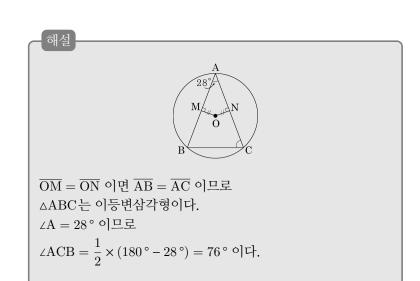
 \bigcirc 11 $\sqrt{3}$ cm

해설

 $\overline{AM} = \sqrt{8^2 - 4^2} = \sqrt{48} = 4\sqrt{3} \text{ (cm)}$ $\therefore \overline{AB} = 2 \times 4\sqrt{3} = 8\sqrt{3} \text{ (cm)}$ **6.** 다음 그림에서 x 의 값을 구하여라.

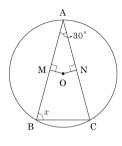
$$\triangleright$$
 정답: $x=3$

7. 그림의 원 O 에서 $\overline{OM} = \overline{ON}$, $\overline{OA} = 4\sqrt{2} \mathrm{cm}$, $\overline{ON} = 4 \mathrm{cm}$ 일 때, \overline{CD} 의 길이를 구하여 라.


중심에서 현에 이르는 거리가 같으므로
$$\overline{AB} = \overline{CD}$$

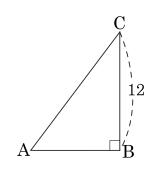
 ΔAOM 에서 $\overline{OM} = 4\,\mathrm{cm}$,

 $\overline{AM} = \sqrt{(4\sqrt{2})^2 - 4^2} = 4 \,\mathrm{cm}$

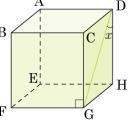

 $\overline{AB} = 2\overline{AM} = 8 \text{ cm}$: $\overline{CD} = \overline{AB} = 8 \text{ cm}$

8. 다음 그림에서 ŌM = ŌN 이고, ∠A = 28° 일 때, ∠ACB 의 크기는?

A
28°
M
O
N


9. 다음 그림에서 $\overline{\mathrm{OM}} = \overline{\mathrm{ON}}$ 일 때, $\angle x$ 의 크기를 구하여라.

- ▶ 답:
- ➢ 정답: 75°


 \triangle ABC 가 이등변삼각형이므로 $\angle x = (180^{\circ} - 30^{\circ}) \div 2 = 75^{\circ}$

10. 다음 그림과 같은 직각삼각형 ABC 에서 $\tan A = \frac{4}{3}$ 이고, \overline{BC} 가 12 일 때, \overline{AC} 의 길이는?

해설
$$\tan A = \frac{\overline{BC}}{\overline{AB}} = \frac{12}{\overline{AB}} = \frac{4}{3} \circ | \Box \vec{z} | 12 \times 3 = 4 \times \overline{AB} \circ | \Gamma.$$

$$\Rightarrow \overline{AB} = 9$$
따라서 $\overline{AC} = \sqrt{9^2 + 12^2} = 15 \circ | \Gamma.$

해설
$$\overline{DG} = 2\sqrt{2}$$

$$\overline{DH} = 2 \circ | \Box \Box \Box \Box$$

$$\cos x = \frac{2}{2\sqrt{2}} = \frac{\sqrt{2}}{2}$$
 따라서 $a + b = 4 \circ | \Box \Box$.

12. 다음 주어진 삼각비의 값 중 가장 작은 값과 가장 큰 값을 짝지은 것은?

 \bigcirc sin 45° \bigcirc cos 45 ° □ tan 60°

해설
$$\bigcirc$$
 Sin $45^\circ = \bigcirc$ Cos $45^\circ = \frac{\sqrt{2}}{2}$

 $\Im\sin 45^{\circ} = \Im\cos 45^{\circ} = \frac{\sqrt{2}}{2}$ $\bigcirc \sin 0$ ° = 0

② cos 60°

 $\bigcirc \tan 60^{\circ} = \sqrt{3}$ 따라서 가장 작은 값은 ©sin 0°, 가장 큰 값은 ©tan 60°

cm

답:

$$\sin 34^{\circ} = \frac{\overline{BC}}{20}$$

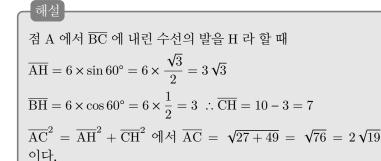
$$\therefore \overline{BC} = 20 \times 0.5592 = 11.184 \text{ (cm)}$$

14. 다음 그림의 평행사변형 ABCD 에서 $\overline{AB}=6\mathrm{cm}$, $\overline{BC}=10cm$, $\angle BCD=120^\circ$ 일 때, \overline{AC} 의 길이는?

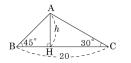
①
$$\sqrt{67}$$

②
$$\sqrt{71}$$

$$3 2\sqrt{19}$$


④
$$\sqrt{86}$$

6cm


В

120°

⑤
$$\sqrt{95}$$

15. 다음 그림과 같은 $\triangle ABC$ 에서 높이 $h \equiv 7$ 하면?

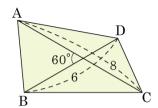
- ① $10(\sqrt{2}-1)$ ② $10(\sqrt{3}-1)$ ③ $10(\sqrt{3}-\sqrt{2})$
- $4 \ 10 \left(2 \sqrt{2} 1\right)$ $5 \ 10 \left(\sqrt{2} 2\right)$

 $h = \frac{20}{\tan(90^{\circ} - 45^{\circ}) + \tan(90^{\circ} - 30^{\circ})}$ $\tan 45^{\circ} + \tan 60^{\circ}$ $=\frac{1}{1+\sqrt{3}}$ $= \frac{20(\sqrt[4]{3} - 1)}{3 - 1}$ $= 10(\sqrt[4]{3} - 1)$

16. 다음은 둔각삼각형에서 두 변의 길이와 그 끼인 각의 크기가 주어질 때, 그 삼각형의 넓이를 구하는 과정이다. □ 안에 알맞은 것은?

①
$$\frac{h}{a}$$
, a , $\tan(180^\circ - \angle B)$ ② $\frac{c}{a}$, a , $\sin(180^\circ - \angle B)$ ③ $\frac{h}{c}$, c , $\cos(180^\circ - \angle B)$ ④ $\frac{c}{h}$, c , $\sin(180^\circ - \angle B)$ ⑤ $\frac{h}{c}$, c , $\sin(180^\circ - \angle B)$

해설
$$A = \frac{b}{B^{2} - a - c} C$$


$$\Delta ABC 에서 \angle ABH = 180^{\circ} - \angle B$$

$$\sin(180^{\circ} - \angle B) = \frac{h}{c} \circ | \text{므로}$$

$$h = c \times \sin(180^{\circ} - \angle B)$$

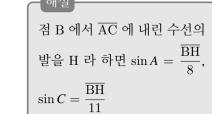
따라서 $\triangle ABC = \frac{1}{2}ah = \frac{1}{2}ac\sin(180^\circ - \angle B)$ 이다.

17. 다음 그림과 같은 사각형 ABCD의 넓이 를 구하면?

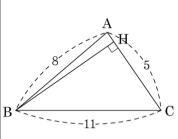
①
$$12\sqrt{3}$$
 ② $11\sqrt{3}$ ③ $10\sqrt{3}$ ④ $9\sqrt{3}$ ⑤ $8\sqrt{3}$

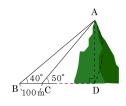
$$S = \frac{1}{2} \times 6 \times 8 \times \sin 60^{\circ}$$
$$= \frac{1}{2} \times 6 \times 8 \times \frac{\sqrt{3}}{2} = 12\sqrt{3}$$

18. 원 모양의 토기 조각에서 다음 그림과 같이 크기를 측정하였다. 이 토기의 원래 크기의 넓이는?



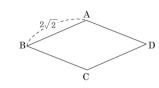
19. 다음 삼각형에서
$$\frac{\sin A}{\sin C}$$
 의 값은?


①
$$\frac{5}{8}$$
 ② $\frac{7}{8}$ ③ $\frac{9}{8}$ ④ $\frac{11}{8}$ ⑤ $\frac{13}{8}$

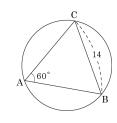


 $\therefore \frac{\sin A}{\sin C} = \frac{\overline{\rm BH}}{8} \div \frac{\overline{\rm BH}}{11} = \frac{\overline{\rm BH}}{8} \times$

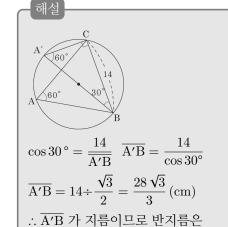
 $\frac{11}{\overline{BH}} = \frac{11}{8}$


20. 산의 높이를 알아보기 위해 다음 그림과 같이 측량하였다. 다음 중 산의 높이 h를 구하기 위한 올바른 식은?

- ① $h \sin 40^{\circ} h \cos 50^{\circ} = 100$
- ② $h\cos 40^{\circ} h\cos 50^{\circ} = 100$
- $4 h \tan 50^{\circ} h \sin 40^{\circ} = 100$


21. 다음 그림과 같이 한 변의 길이가 2√2 이고, 넓이가 4√2 인 마름모의 한 예각의 크기는?
 (단, 0° < ∠B < 90°)

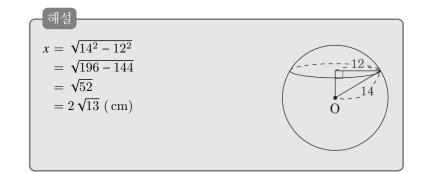
①
$$30^{\circ}$$
 ② 40° ③ 45° ④ 60° ⑤ 75°


마름모는 네 변의 길이가 모두 같으므로
$$\Box ABCD$$
 의 넓이는 $2\sqrt{2} \times 2\sqrt{2} \times \sin x^\circ = 4\sqrt{2}$ $x = 45^\circ$ 이다.

22. $\triangle ABC$ 에서 $\angle A=60^\circ, \ \overline{BC}=14$ 일 때 $\triangle ABC$ 의 외접원의 반지름의 길이를 구하여라.

- ① $\frac{10\sqrt{3}}{3}$
 - $\frac{\sqrt{3}}{2}$ 2 $4\sqrt{3}$

⑤ $6\sqrt{3}$



 $\frac{28\sqrt{3}}{3} \times \frac{1}{2} = \frac{14\sqrt{3}}{3}$ (cm) 이다.


23. 반지름이 14 cm 인 구를 어떤 평면으로 잘랐을 때, 단면인 원의 반지름이 12 cm 이었다. 이 평면과 구의 중심과의 거리를 구하여라.

<u>cm</u>

▷ 정답: 2√13 cm

24. 다음 그림의 원 O 에서 $\overline{AB} \perp \overline{OM}$ 이고 $\overline{AB} =$ $\overline{\text{CD}}$ 이다. $\overline{\text{AM}} = 6\text{cm}$, $\overline{\text{OM}} = \sqrt{5}\text{cm}$ 일 때, 원 O 의 넓이는?

(3) $56\pi \text{cm}^2$

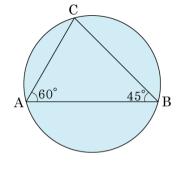
 $41\pi\mathrm{cm}^2$

② $49\pi \text{cm}^2$ $40 60 \pi \text{cm}^2$

⑤ $64\pi \text{cm}^2$

 $\overline{AB} = \overline{CD}$ 이므로 $\overline{OM} = \overline{ON} =$ √5cm 이다. 피타고라스 정리에 의해 $\overline{OC} = \sqrt{(\sqrt{5})^2 + 6^2} = \sqrt{41} \, \text{cm}$ 따라서 원의 넓이는 $\pi(\sqrt{41})^2 = 41\pi(\text{cm}^2)$ 이다.

Μ

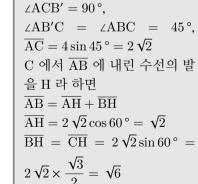

25. 다음 그림과 같이 반지름의 길이가 2
 인 원에 내접하는 △ABC 에서 ∠A =
 60°, ∠B = 45°일 때, ĀB 의 길이는?

①
$$\sqrt{2} + \sqrt{3}$$
 ② $\sqrt{2} + \sqrt{6}$
③ $\sqrt{3} + \sqrt{6}$ ④ $\sqrt{5} + \sqrt{6}$

해설

③ $\sqrt{3} + \sqrt{6}$ ④ $\sqrt{5} + \sqrt{6}$ ⑤ $\sqrt{6} + \sqrt{7}$

 $\triangle AB'C$ 에서 $\overline{AB'} = 4$.


 45°

45°

0

 $\overline{\mathrm{H}}$

60°

 $\therefore \overline{AB} = \sqrt{2} + \sqrt{6}$