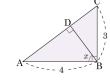

1. 다음 그림의 직각삼각형 ABC 에서 $\sin A$ 의 값을 구하여라.

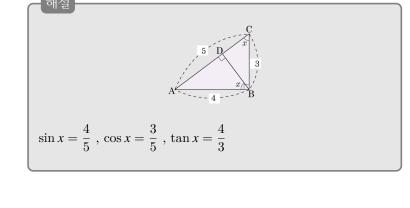
답:

ightharpoonup 정답: $\frac{a}{c}$

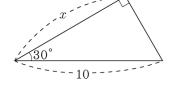
 $\sin A = \frac{a}{c}$


2. $\sin A = \frac{12}{13}$ 일 때, $\cos A + \tan A$ 의 값을 구하여라. (단, $0^\circ < A < 90^\circ$)

▶ 답:


 ▷ 정답:
 \frac{181}{65}

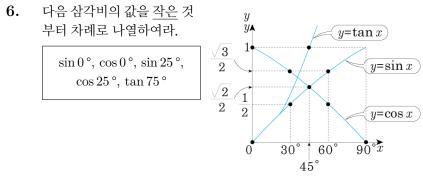
 $\sin A = \frac{12}{13}$ 이므로 (다른 한 변의 길이) = $\sqrt{13^2 - 12^2} = 5$ $\cos A + \tan A = \frac{5}{13} + \frac{12}{5} = \frac{181}{65}$


다음 그림에서 $\sin x$, $\cos x$, $\tan x$ 의 값을 차례로 구하여라. **3.**

- ▶ 답:
- 답:
- ▶ 답:
- $ightharpoonup
 m S답: \sin x = rac{4}{5}$ $ightharpoonup
 m SG: \cos x = rac{3}{5}$ $ightharpoonup
 m SG: \tan x = rac{4}{3}$

4. 다음 그림에서 x의 길이를 구하여라.

▶ 답:


ightharpoonup 정답: $5\sqrt{3}$

$$\cos 30^{\circ} = \frac{x}{10}$$

$$\frac{\sqrt{3}}{2} = \frac{x}{10}$$

따라서 $x = 5\sqrt{3}$

- 5. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 $\tan x$ 를 나타내는 선분은?

 $\tan x = \frac{\overline{AB}}{\overline{OB}} = \frac{\overline{CD}}{\overline{OD}} = \overline{CD}$

 ▷ 정답:
 sin 25°

 ▷ 정답:
 cos 25°

 ▷ 정답:
 cos 0°

 ▷ 정답:
 tan 75°

 $\sin 0^{\circ} = 0$, $\cos 0^{\circ} = 1$, $0^{\circ} < \sin 25^{\circ} < \frac{1}{2}$, $\frac{\sqrt{2}}{2} < \cos 25^{\circ} < 1$, $\tan 75^{\circ} > 1^{\circ}$ 7. $\sin A : \cos A = 4 : 5$ 일 때, $\tan A$ 의 값을 구하여라.

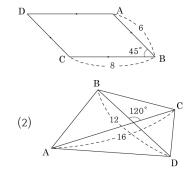
▶ 답:

ightharpoonup 정답: $rac{4}{5}$

 $\sin A : \cos A = 4 : 5$

 $4\cos A = 5\sin A$ $\therefore \tan A = \frac{\sin A}{\cos A} = \frac{4}{5}$

8. 다음 삼각비의 표를 보고 $\sin 70^{\circ} + \cos 50^{\circ} \times \sin 25^{\circ} + \tan 70^{\circ}$ 의 값을 구하면?

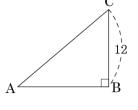

각도	sin	cos	tan
25°	0.42	0.90	0.46
50°	0.76	0.64	1.19
70°	0.93	0.34	2.74

3.9388 ① 3.9188 ② 3.9288 **4** 3.9488 \bigcirc 3.9588

= 3.9388

(준식) = $0.93 + 0.64 \times 0.42 + 2.74$

다음과 같은 두 사각형의 넓이는 각각 얼마인가? 9.


- ① $(1)22\sqrt{2},(2)43\sqrt{3}$ $3 (1)22\sqrt{2}, (2)48\sqrt{3}$
- ② $(1)22\sqrt{2}, (2)45\sqrt{3}$ (4) $(1)24\sqrt{2}, (2)45\sqrt{3}$
- \bigcirc (1)24 $\sqrt{2}$, (2)48 $\sqrt{3}$

$$(1) (넓\circ]) = 6 \times 8 \times \sin 45^{\circ}$$

$$= 6 \times 8 \times \frac{\sqrt{2}}{2} = 24\sqrt{2}$$
(2) (달아) = $\frac{1}{2} \times 12 \times 16 \times \sin(180^{\circ} - 120^{\circ})$

$$= \frac{1}{2} \times 12 \times 16 \times \frac{\sqrt{3}}{2} = 48\sqrt{3}$$

10. 다음 그림과 같은 직각삼각형 ABC 에서 $\sin A = \frac{4}{5} \text{ 이고, } \overline{BC} \text{ 가 } 12\text{cm 일 때, } \overline{AC} - \overline{AB} \text{ 의 값은?}$

① 2 ② 4 ③ 6 ④ 8

⑤ 10

$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{5}$$
 이므로 $\overline{AC} \times \sin A = \overline{BC}$ 이다.
$$\Rightarrow \overline{AC} \times \frac{4}{5} = 12, \ \overline{AC} = 15$$

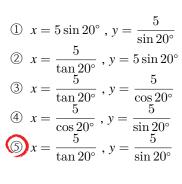
피타고라스 정리에 의해 $\overline{AB}=\sqrt{15^2-12^2}=9$ 이다. 따라서 $\overline{AC}-\overline{AB}=15-9=6$ 이다.

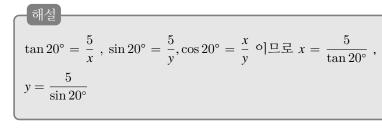
11. 다음 식의 값은? $\sin 60° \times \sin^2 30° + \cos 30° \times \sin^2 60°$

① 1 ② $\frac{\sqrt{3}}{2}$ ③ $\frac{\sqrt{2}}{2}$ ④ $\frac{1}{2}$ ⑤ 0

sin 60° × sin² 30° + cos 30° × sin² 60° $= \frac{\sqrt{3}}{2} \times \left(\frac{1}{2}\right)^2 + \frac{\sqrt{3}}{2} \times \left(\frac{\sqrt{3}}{2}\right)^2$ $= \frac{\sqrt{3}}{8} + \frac{3\sqrt{3}}{8} = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$

 $=\frac{1}{8}+\frac{1}{8}=\frac{1}{8}=\frac{1}{2}$


- **12.** 좌표평면 위에 두 점 A(5, 3), B(2, 1) 을 지나는 직선이 x 축의 양의 방향과 이루는 각의 크기를 θ 라 할 때, $\tan\theta$ 의 값을 구하면?
 - $\begin{array}{c}
 (1) \quad \frac{1}{4} \\
 4 \quad \sqrt{1} \\
 13
 \end{array}$
- $3\frac{2}{3}$


- 13. 이차방정식 $x^2-3=0$ 을 만족하는 x 의 값이 $\tan A$ 의 값과 같을 때, $\sin A\cos A$ 의 값은? (단, 0° < A < 90°)
 - ① $\frac{1}{2}$ ② $\frac{\sqrt{3}}{2}$ ③ $\frac{1}{4}$ ④ $\frac{\sqrt{3}}{4}$ ⑤ $\frac{3\sqrt{3}}{4}$

 $x^2 - 3 = 0$ od A $x^2 = 3$, $\therefore x = \sqrt{3} \ (\because x > 0)$ $\tan A = \sqrt{3}$, $\therefore A = 60^{\circ} \ (\because 0^{\circ} < A < 90^{\circ})$

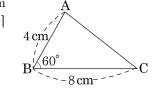
 $\sin A \cos A = \sin 60^{\circ} \times \cos 60^{\circ} = \frac{\sqrt{3}}{2} \times \frac{1}{2} = \frac{\sqrt{3}}{4}$

- 14. 다음 직각삼각형에서 x, y 의 값을 주어진 각과 변을 이용하여 삼각비로 나타낸 것은?

- 15. 다음 그림과 같이 바다를 항해하는 배와 등대 사이의 거리가 21 m 이고, 배에서 등대의 꼭대기를 바라 본 각의 크기가 15°이었다면, 등대의 높이는?

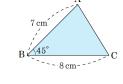
 - ① $\tan 15\,^{\circ}\,\mathrm{m}$ $4 21 \sin 15$ ° m
- ② 21 tan 15 ° m ③ sin 15 ° m $\Im \cos 15^{\circ} \mathrm{m}$

 $\tan 15^\circ = \frac{x}{21}$ 이므로 $x = 21 \tan 15^\circ \text{m}$ 이다.


16. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AB}=4cm$, $\overline{BC}=8cm$, $\angle B=60^\circ$ 일 때, \overline{AC} 의 길이

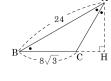
 $1 \sqrt{3}$ cm

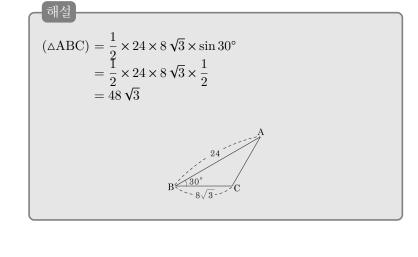
⑤ 7cm



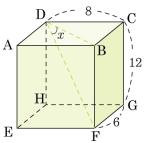
 $3 6\sqrt{3}$ cm

B (60° $\overline{\rm AH} = 4\sin 60^\circ$ $=4\times\frac{\sqrt{3}}{2}=2\sqrt{3}$ $\overline{\mathrm{HC}} = 8 - \overline{\mathrm{BH}}$ $= 8 - 4\cos 60^{\circ}$ = 8 - 2 = 6 $\overline{AC}^2 = \overline{AH}^2 + \overline{HC}^2$ 이므로 $\overline{AC}^2 = (2\sqrt{3})^2 + 6^2 = 12 + 36 = 48$ $\therefore x = 4\sqrt{3}(\text{cm})$


17. 다음 그림의 △ABC의 넓이는?


- ① $7\sqrt{2} \text{ cm}^2$ ② $14\sqrt{2} \text{ cm}^2$ ③ $21\sqrt{2} \text{ cm}^2$ ④ $28\sqrt{2} \text{ cm}^2$ ⑤ $56\sqrt{2} \text{ cm}^2$

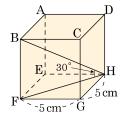
 $\frac{1}{2} \times 7 \times 8 \times \sin 45^{\circ} = 28 \times \frac{\sqrt{2}}{2} = 14 \sqrt{2} (\text{cm}^2)$


18. 다음 그림과 같은 △ABC 의 넓이를 구하면?

① $48\sqrt{6}$ ② $48\sqrt{5}$ ③ $48\sqrt{3}$ ④ $48\sqrt{2}$ ⑤ 48

19. 다음 직사각형에서 \angle FDB 를 x 라고 하면, $\sin x \times \cos x = \frac{b}{a}$ 이다. a+b의 값을 구하시오. (단, a, b는 서로소)

▶ 답: ▷ 정답: 91

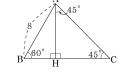

 $\overline{\mathrm{DB}} = 10$

 $\overline{BF} = 12$

 $\overline{\mathrm{DF}} = 2\,\sqrt{61}$ 이므로

 $\sin x \times \cos x = \frac{12}{2\sqrt{61}} \times \frac{10}{2\sqrt{61}} = \frac{30}{61}$ 따라서 a+b=91 이다.

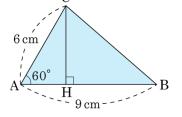
 ${f 20}$. 아래 그림과 같은 직육면체에서 $\overline{
m HG}=\overline{
m FG}=$ 5 cm , ∠BHF = 30°일 때, 이 직육면체의 부 피는?



- ① $\frac{25\sqrt{6}}{3} \text{ cm}^3$ ② $\frac{125\sqrt{6}}{3} \text{ cm}^3$ ③ $\frac{125\sqrt{6}}{2} \text{ cm}^3$ ④ $68\sqrt{6} \text{ cm}^3$ ⑤ $125\sqrt{6} \text{ cm}^3$

 $\overline{FH} = 5\sqrt{2} \text{ cm} , \overline{AE} = \overline{BF} = \overline{FH} \times \tan 30^{\circ}$ $\therefore \overline{AE} = 5\sqrt{2} \times \frac{1}{\sqrt{3}} = \frac{5\sqrt{6}}{3}$ $\stackrel{\text{H}}{=} \overline{\Pi} \stackrel{\text{L}}{=} 5 \times 5 \times \frac{5\sqrt{6}}{3} = \frac{125\sqrt{6}}{3} \text{ (cm}^3)$

$$\therefore AE = 5\sqrt{2} \times \frac{1}{\sqrt{3}} = \frac{3\sqrt{3}}{3}$$

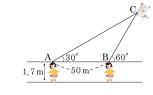

 ${f 21.}$ 다음과 같은 ΔABC 에서 \overline{AC} 의 길이를 구하여라.

답:
 ▷ 정답: 4√6

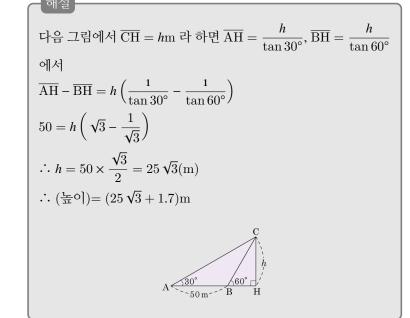
$$\overline{AH} = 8 \times \sin 60^\circ = 8 \times \frac{\sqrt{3}}{2} = 4\sqrt{3}$$
 이므로
$$\overline{AC} = \frac{\overline{AH}}{\cos 45^\circ} = \frac{4\sqrt{3}}{\frac{\sqrt{2}}{2}} = \frac{8\sqrt{3}}{\sqrt{2}} = 4\sqrt{6}$$
이다.

22. 다음 그림과 같은 삼각형 ABC 에서 $\overline{AC}=6\,\mathrm{cm}$, $\overline{AB}=9\,\mathrm{cm}$, $\angle A=60\,^\circ$ 일 때, 삼각형 CHB 의 둘레의 길이를 구하면?

- ① $(\sqrt{3} + \sqrt{6}) \text{ cm}$ $3(3\sqrt{3}+3\sqrt{7}+6)$ cm
- ② $(2\sqrt{3} + \sqrt{7}) \text{ cm}$ $(2\sqrt{3} + 3\sqrt{7}) \text{ cm}$
- ⑤ $(3\sqrt{3} + 3\sqrt{7}) \text{ cm}$

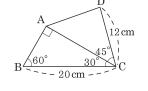

 $\overline{\text{CH}} = 6 \times \sin 60^{\circ} = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}(\text{ cm})$ $\overline{AH} = 6 \times \cos 60^{\circ} = 6 \times \frac{1}{2} = 3(\text{ cm})$

$$\therefore \overline{BH} = 9 - 3 = 6(\text{ cm})$$


 $\overline{\overline{BC}}^2 = \overline{CH}^2 + \overline{BH}^2 \text{ old } A$ $\overline{BC} = \sqrt{27 + 36} = \sqrt{63} = 3\sqrt{7} \text{ (cm)}$

 \therefore \triangle CHB 의 둘레는 $\overline{CH} + \overline{BH} + \overline{BC} = (3\sqrt{3} + 6 + 3\sqrt{7})\,\mathrm{cm}$

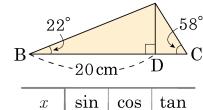
23. A,B 두 사람이 다음 그림과 같이 연을 바라보았을 때, 연의 높이는?



- ① $(20\sqrt{2} + 1.7)$ m ③ $(25\sqrt{2} + 1.7)$ m
- ② $(25\sqrt{3} + 1.7)$ m ④ $(28\sqrt{2} + 1.7)$ m
- $(30\sqrt{3} + 1.7)$ m

24. 다음 그림과 같은 □ABCD 의 넓이를 구하 여라.

답:



ightharpoonup 정답: $50\sqrt{3} + 30\sqrt{6} \, \mathrm{cm}^2$

 $\sin 60^{\circ} = \frac{\overline{AC}}{\overline{BC}} = \frac{\overline{AC}}{20}, \quad \frac{\overline{AC}}{20} = \frac{\sqrt{3}}{2}$ $\therefore \overline{AC} = 10\sqrt{3} \, (cm)$ (□ABCD 의 넓이)= △ABC + △ACD $= \frac{1}{2} \times 20 \times 10 \sqrt{3} \times \sin 30^{\circ} + \frac{1}{2} \times 10 \sqrt{3} \times 12 \times \sin 45^{\circ}$ $= \frac{1}{2} \times 20 \times 10 \sqrt{3} \times \frac{1}{2} + \frac{1}{2} \times 10 \sqrt{3} \times 12 \times \frac{\sqrt{2}}{2}$ $=50\sqrt{3}+30\sqrt{6}$ (cm²)

 $\underline{\rm cm^2}$

25. 다음 그림에서 $\triangle ABC$ 의 넓이를 구하여라.(단, 단위는 생략한다.)

	\boldsymbol{x}	sın	cos	tan
,	22°	0.37	0.93	0.40
	58°	0.85	0.53	1.60

▷ 정답: 100

답:

 $\triangle ABD$ 에서 $\overline{AD} = \overline{BD} \tan B = 20 \tan 22^\circ = 20 \times 0.40 = 8 \text{ (cm)}$ $\triangle ACD$ 에서 $\overline{CD} = \frac{\overline{AD}}{\tan 58^\circ} = \frac{8}{1.6} = 5 \text{ (cm)}$ 이다. 따라서 $\triangle ABC = \frac{1}{2} \times (20+5) \times 8 = 100 \text{ (cm}^2)$ 이다.