

$$\overline{BC} = \sqrt{3^2 + 4^2} = 5$$

$$\angle ABH = y, \angle ACH = x$$

△ABC औं
$$\cos x = \frac{\overline{AC}}{\overline{BC}} = \frac{4}{5}, \sin y = \frac{\overline{AC}}{\overline{BC}} = \frac{4}{5}$$

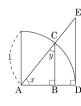
∴ $\cos x + \sin y = \frac{8}{5}$

- 다음 그림을 이용하여 an x 의 값을 2. 구하여라.

- ① $\frac{2-\sqrt{3}}{2}$ ② $\frac{3-\sqrt{3}}{2}$ ③ $2-\sqrt{3}$ ④ $\frac{2(1-2\sqrt{3})}{3}$ ③ $\frac{3(1-\sqrt{3})}{3}$

 $\overline{AD} = \overline{BD} = 2\overline{AC} =$ $\overline{DC} = \sqrt{3} \ \overline{AC} = 3\sqrt{3}$ $\overline{BC} = 6 + 3\sqrt{3}$ 이므로 $\overline{DC} = 6 + 3\sqrt{3}$ $\tan x = \frac{3}{6+3\sqrt{3}} = \frac{3(2-\sqrt{3})}{3} = 2-\sqrt{3}$

다음 그림에서 사다리꼴 ABCD 의 넓이는? **3.**


- ① 22 ② 25 ③ $3\sqrt{3} + 16$ ④ $6\sqrt{3} + 16$

점 A 에서 $\overline{\rm BC}$ 에 수선을 내린 발을 점 H 라 할 때, $\sin 30^\circ =$ $\dfrac{\overline{AH}}{\overline{AB}}=\dfrac{\overline{AH}}{6}=\dfrac{1}{2},\;\overline{AH}=3$ 이다.

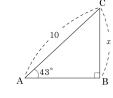
또, $\cos 30^\circ = \frac{\overline{BH}}{\overline{AB}} = \frac{\overline{BH}}{6} = \frac{\sqrt{3}}{2}$, $\overline{BH} = 3\sqrt{3}$ 이다. 따라서 사다리꼴 ABCD 의 넓이는 $\frac{1}{2} \times (4+4+3\sqrt{3}) \times 3 =$

 $12 + \frac{9\sqrt{3}}{2}$ 이다.

4. 다음 그림은 반지름의 길이가 1 인 사분원이다. 다음 값을 분모가 1 인 길이로 나타내었을 때, 그 길이가 \overline{BC} 와 같은 것을 모두 고르면?

 $\sin x = \cos y = \overline{BC}$

- 5. 함수 $y = \sin^2 x 2\sin x + 2$ 의 최댓값과 최솟값은? (단, $0^{\circ} \le x \le 90^{\circ}$
 - ① 최댓값 2, 최솟값 1 ② 최댓값 3, 최솟값 1 ③ 최댓값 2 , 최솟값 -1 ④ 최댓값 4 , 최솟값 1
 - ⑤ 최댓값 1 , 최솟값 -3


 $\sin x = A \ (0 \le A \le 1)$ 라 하면

해설

 $y = A^2 - 2A + 2 = (A - 1)^2 + 1$ A=0일 때, 최댓값 2

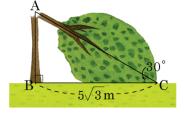
A=1일 때, 최솟값 $1 (0 \le A \le 1)$

6. 다음 그림의 $\triangle ABC$ 에서 삼각비의 표를 보고 x 의 값을 구하면?

〈삼각비의 표〉

x	sin x	cos x	tan x
43°	0.6820	0.7314	0.9325
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6821	1.0724

① 6.82 ② 6.947 ③ 7.071 ④ 7.193 ⑤ 7.314


 $\sin 43^\circ = \frac{x}{10}$ 이므로 $x = 10 \times \sin 43^\circ = 10 \times 0.682 = 6.82$ \therefore 6.82

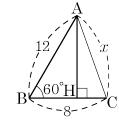
7. 다음 그림의 $\triangle ABC$ 에서 $\sin x$ 의 값은?

① $\frac{7}{17}$ ② $\frac{8}{17}$ ③ $\frac{8}{15}$ ④ $\frac{15}{17}$ ⑤ $\frac{15}{8}$

 $\triangle BED$ \hookrightarrow $\triangle BAC$ 이므로 $\angle x = \angle C$ 또한 $\overline{BC} = \sqrt{15^2 + 8^2} = 17$ 이다. 따라서 $\sin x = \sin C = \frac{15}{17}$ 이다.

8. 지면으로 수직으로 서 있던 나무가 다음과 같이 부러졌다. 이 때, 부 러지기 전의 나무의 높이를 구하여

▷ 정답: 15 m


답:

 $\overline{AB} = 5\sqrt{3}\tan 30^{\circ} = 5\sqrt{3} \times \frac{\sqrt{3}}{3} = 5 (m)$ 이다. $\overline{AC} = \frac{5\sqrt{3}}{\cos 30^{\circ}} = 5\sqrt{3} \times \frac{2\sqrt{3}}{3} = 10(m) \text{ or}.$

다는
$$\frac{1}{\cos 30^{\circ}}$$
 = $\frac{1}{3}$ = $\frac{1}{3}$ (m) 부가.
따라서 부러지기 전의 나무의 높이는 $\overline{AB} + \overline{AC} = 5 + 10 = 15$ (m)

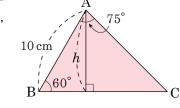
 $\underline{\mathbf{m}}$

9. 다음 그림에서 x 의 길이를 구하면?

 $4\sqrt{7}$ ① $4\sqrt{2}$ ② $4\sqrt{3}$ ③ $4\sqrt{5}$ ⑤ $4\sqrt{11}$

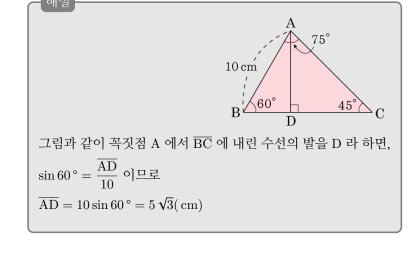
$$\overline{AH} = 12\sin 60^{\circ} = 12 \times \frac{\sqrt{3}}{2} = 6\sqrt{3}$$

$$\overline{BH} = 12\cos 60^{\circ} = 12 \times \frac{1}{2} = 6$$

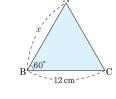

해설

$$BH = 12\cos 60^{\circ} = 12 \times \frac{1}{2} = 6$$
 $\overline{CH} = 8 - 6 = 2$

$$\overline{\text{CH}} = 8 - 6 = 2$$


$$x = \sqrt{(6\sqrt{3})^2 + 2^2} = \sqrt{108 + 4} = \sqrt{112} = 4\sqrt{7}$$

10. 다음 그림과 같이 $\triangle ABC$ 에서 $\angle A=$ $75\,^{\circ}$, $\angle B = 60\,^{\circ}$, $\overline{AB} = 10\,\mathrm{cm}$ 일 때, h 의 길이를 구하면?



① $\frac{5\sqrt{3}}{2}$ cm ② 10 cm ② $5\sqrt{3}$ cm ③ $\frac{10+5\sqrt{2}}{2}$ cm

 $3 \frac{10+5\sqrt{3}}{2} cm$

11. 다음 그림에서 $\triangle ABC$ 의 넓이가 $60\sqrt{3} \mathrm{cm}^2$ 일 때, x 의 값을 구하여라.

 $\underline{\mathrm{cm}}$

답:> 정답: 20cm

 $60\sqrt{3} = \frac{1}{2} \times x \times 12 \times \sin 60^{\circ}$ $= \frac{1}{2} \times x \times 12 \times \frac{\sqrt{3}}{2}$ $= 3\sqrt{3}x$ $\therefore x = \frac{60\sqrt{3}}{3\sqrt{3}} = 20(\text{cm})$

∠C = 75° 일 때, ΔABC 의 넓이로 알맞은 것은?
 ① 60
 ② 60.5

12. 다음 그림은 이등변삼각형이다.

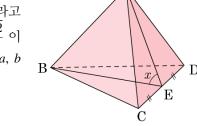
- 3 62
- ② 60.5④ 62.5
- **⑤**64

해설

$$\Delta ABC = \frac{1}{2} \times 16 \times 16 \times \sin(180^{\circ} - 75^{\circ} \times 2)$$
$$= \frac{1}{2} \times 16 \times 16 \times \frac{1}{2} = 64$$

13. 한 내각이 150°인 마름모의 넓이가 32 일 때, 이 마름모의 한 변의 길이를 구하여라.

▶ 답: ▷ 정답: 8


 $x \times x \times \sin(180^{\circ} - 150^{\circ}) = 32$ $x \times x \times \sin(180^{\circ} - 150^{\circ}) = 52^{\circ}$ $x^{2} \times \sin 30^{\circ} = 32^{\circ}$ $x^{2} \times \frac{1}{2} = 32^{\circ}$ $x^{2} = 64^{\circ}$ $x = 0^{\circ}$ 한 변의 길이이므로 양수이므로

x = 8이다.

- 14. 다음 그림과 같은 $\square ABCD$ 에서 두 대각선 \overline{AC} 와 \overline{BD} 의 길이의 합은 11 이고, $\angle COD = 120^\circ$, $\overline{OD} = \overline{OC} = 2$ 라고 한다. $\triangle AOD$ 의 넓이가 $\frac{3\sqrt{3}}{2}$ 일 때, $\Box ABCD$ 의 넓이는?

 - ∠AOD = 60°이므로 $\triangle AOD = \frac{1}{2} \times \overline{AO} \times 2 \times \sin 60^{\circ} = \frac{3\sqrt{3}}{2}$ 따라서 $\overline{\mathrm{AO}}=3$ 이 나온다.
 - \overline{AO} 와 \overline{BD} 의 길이의 합은 11이므로 $\overline{OB}=4$ 따라서 🗆 ABCD 의 넓이는
 - $S = \frac{1}{2} \times 5 \times 6 \times \sin 60$ ° $= \frac{1}{2} \times 5 \times 6 \times \frac{\sqrt{3}}{2} = \frac{15\sqrt{3}}{2}$ 이다.

15. 다음 그림과 같이 한 변의 길이가 4인 정사면체 A - BCD 에서 $\overline{\mathrm{CD}}$ 의 중점을 E 라 하고, \angle AEB 를 x 라고 할 때, $\sin x \times \cos x$ 의 값이 $\frac{b\sqrt{2}}{a}$ 이 다. a+b 의 값을 구하시오. (단, a, b 는 서로소)

▷ 정답: 11

▶ 답:

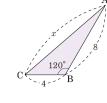
 $\overline{ ext{CE}}=2$ 이고 점 \mathbf{A} 에서 $\overline{ ext{BE}}$ 에 내린 수선의 발을 \mathbf{H} 라 하면 점 \mathbf{H} 는 $\triangle BCD$ 의 무게중심이므로 $\overline{EH}=rac{1}{3}\overline{EB},$ $\overline{EB}=2\sqrt{3}$ $\overline{\rm EH} = \frac{1}{3} \times 2\sqrt{3} = \frac{2\sqrt{3}}{3} \ , \ \overline{\rm AE} = 2\sqrt{3}$

$$\overline{AH} = \frac{4\sqrt{6}}{3}$$

$$\sin x \times \cos x = \frac{4\sqrt{6}}{2\sqrt{3}} \times \frac{2\sqrt{3}}{2\sqrt{3}} = \frac{24\sqrt{2}}{9} = \frac{2\sqrt{2}}{9} \text{ or}.$$

 $\therefore a + b = 9 + 2 = 11$

16. 다음 중 옳은 것은?


- ① $\sin 30^{\circ} \sin 60^{\circ} = \frac{\sqrt{2} \sqrt{3}}{2}$
- ② $\cos 30^{\circ} \times \tan 30^{\circ} + \sin 60^{\circ} \times \tan 30^{\circ} = 2$
- $\Im \frac{\cos 60^{\circ}}{\sin 30^{\circ}} = \sqrt{3}$

- $\textcircled{1} \sin 30^{\circ} \sin 60^{\circ} = \frac{1-\sqrt{3}}{2}$
- ② $\cos 30^{\circ} \times \tan 30^{\circ} + \sin 60^{\circ} \times \tan 30^{\circ} = 1$ ③ $\frac{\cos 60^{\circ}}{\sin 30^{\circ}} = 1$
- $\Im \tan 60^{\circ} \times \tan 45^{\circ} = \sqrt{3}$

- **17.** 다음 그림과 같이 실의 길이가 100cm 인 추 가 좌우로 진동운동을 하고 있다. 이 실이 $\overline{\mathrm{OA}}$ 와 30° 의 각도를 이루었을 때, 추는 점 A를 기준으로 하여 몇 cm 의 높이에 있는지 구하여라. ① $25 - 20\sqrt{3}$ ② $25 - 50\sqrt{3}$
- $100\,\mathrm{cm}'$
- \bigcirc 100 50 $\sqrt{3}$
- $3 50 20\sqrt{2}$ $4 100 - 25\sqrt{3}$

해설 점 B에서 \overline{OA} 에 내린 수선을 그렸을 때 만나는 점을 H라 하자. $\therefore x = \overline{OA} - \overline{OH}$ 100 cm $= 100 - 100 \cos 30^{\circ}$ 100 cm = $100 - 100 \times \frac{\sqrt{3}}{2}$ = $100 - 50 \sqrt{3}$ (cm)

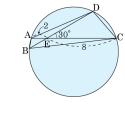
18. 다음 그림의 $\triangle ABC$ 에서 \overline{AC} 의 길이는?

① $\sqrt{7}$ ② $6\sqrt{2}$ ③ $3\sqrt{7}$ ④ $7\sqrt{2}$

점 A 에서 내린 수선과 $\overline{\mathrm{BC}}$ 의 연장선이 만나는 점을 H 라 할 때

 $\overline{\rm AH} = 8 \times \sin 60^\circ = 4\sqrt{3}$

 $\overline{BH} = 8 \times \cos 60^{\circ} = 4$ $\therefore \overline{AC} = \sqrt{(4\sqrt{3})^2 + 8^2} = 4\sqrt{7}$


19. $\tan A = \frac{1}{2}$ 일 때, $\frac{\cos^2 A - \cos^2 (90 \circ - A)}{1 + 2\cos A \times \cos (90 \circ - A)}$ 의 값은?

① $\frac{1}{2}$ ② $\frac{1}{3}$ ③ $\frac{1}{4}$ ④ $\frac{1}{6}$ ⑤ $\frac{1}{9}$

해설

 $\cos(90^{\circ} - A) = \sin A$ $\sin^{2} x + \cos^{2} x = 1 \text{ 이 므로}$ $(준식) = \frac{\cos^{2} A - \sin^{2} A}{\cos^{2} A + 2 \cos A \times \sin A + \sin^{2} A}$ $= \frac{(\cos A + \sin A)(\cos A - \sin A)}{(\cos A + \sin A)^{2}}$ $= \frac{\cos A - \sin A}{\cos A + \sin A} \text{ (:: } \cos A + \sin A \neq 0)$ $= \frac{1 - \frac{\sin A}{\cos A}}{1 + \frac{\sin A}{\cos A}} = \frac{1 - \tan A}{1 + \tan A}$ $= \frac{1}{3}$

 ${f 20}$. 다음 그림과 같이 원에 내접하는 사각형 ABCD 에서 $\overline{
m AE}=2$, $\overline{
m EC}=8$, $\angle \mathrm{DEC} = 30^\circ$ 이다. 이 사각형의 넓이가 20 일 때, $\overline{\mathrm{DE}}$ 의 길이는?

① 3

해설

③ 5 ④ 6 ⑤ 7

□ABCD 의 넓이가 20 이므로 $\frac{1}{2} \times 10 \times \overline{BD} \times \sin 30^{\circ} = 20$ $\frac{1}{2} \times 10 \times \overline{BD} \times \frac{1}{2} = 20$ $\therefore \overline{BD} = 8$ $\overline{\text{DE}} = x$ 라면, $\overline{\text{BE}} = 8 - x$ $2 \times 8 = x(8-x), \ 16 = 8x - x^2$ $x^2 - 8x + 16 = 0, (x-4)^2 = 0$ $\therefore x = 4$