1. 함수 $f(x) = ax^3 - bx + 10$ (a, b 는 상수)에 대하여 f(-7) = 5일 때, f(7)의 값을 구하면?

$$f(-7) = -7^3 a + 7a + 10 = 5$$
에서, $7^3 a - 7b = 5$
 $\therefore f(7) = 7^3 a - 7b + 10 = 5 + 10 = 15$

2.
$$X = \{x \mid -2 \le x \le 2\}, Y = \{y \mid -3 \le y \le 3\}$$
 에서 $f : X \to Y$, $f(x) = ax + b$ (단, $a > 0$) 로 정의되는 함수 f 가 일대일 대응이 되도록 a , b 의 값을 정하면?

①
$$a = \frac{3}{2}, \ b = 0$$
 ② $a = \frac{1}{2}, \ b = 0$ ③ $a = \frac{3}{2}, \ b = 1$ ④ $a = \frac{5}{2}, \ b = 0$ ⑤ $a = 2, \ b = 0$

$$\begin{cases} f(-2) = -2a + b = -3 \\ f(2) = 2a + b = 3 \end{cases}$$
$$\therefore a = \frac{3}{2}, b = 0$$

f 가 일대일 대응이고 a > 0 이므로

3. 두 함수 f(x) = 3x - 5, $g(x) = x^2 + 1$ 에 대하여 (g ∘ f)(2)의 값을 구하면?

① 0 ② 1 ③ 2 ④ 3 ⑤ 4

해설

$$(g \circ f)(2) = g(f(2)) = g(1) = 2$$

4. 함수 f(x)가 f(2x+1) = 3x + 2를 만족할 때, f(3)의 값을 구하면?

 \bigcirc 1

f(2x+1) = 3x + 2 에서 2x + 1 = 3 이므로 x = 1을 대입하면 $f(2 \cdot 1 + 1) = f(3) = 3 \cdot 1 + 2 = 5$

5. 다음 두 조건을 만족하는 함수 $f: X \to Y$ 를 모두 고르면?

(i)
$$f(x) = Y(단, x \in X)$$

(ii) $x_1 \neq x_2$ 이면 $f(x_1) \neq f(x_2)$ (단, $x, x_2 \in X$)

$$A \cdot f(x) = x^2 - 1$$

 $B \cdot f(x) = |x| + 2x$

C .
$$f(x) = x^3 + 1$$

D . $f(x) = \frac{2}{x-1}$

$$D \cdot f(x) = \frac{2}{x-1}$$

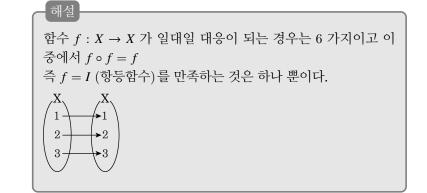
주어진 성질은 일대일대응을 말하는 것이므로 해당되는 함수는 B. C 이다.

- 6. 집합 X 에서 Y 로의 일대일 대응의 개수가 24 개일 때, 집합 X 의부분집합의 개수를 구하면?
 - ① 12 ② 16 ③ 24 ④ 32 ⑤ 36

집합
$$X$$
, Y 의 원소의 개수가 $n(X) = n(Y) = n$ 일 때, 집합 X 에서 Y 로의 일대일 대응의 개수는 $n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$ (개)이다. 무제에서 일대일 대응의 개수가 24 이므로

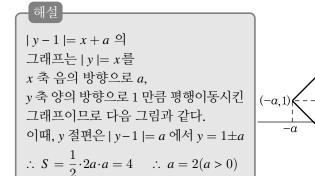
: 집합 X 의 부분집합의 개수는

 $\therefore n=4$


 $2^n = 2^4 = 16(7)$

7. 집합 $A = \{-1, 0, 1\}$ 에 대하여 A 에서 A 로의 함수 f 중 f(x) = f(-x) 를 만족시키는 것의 개수는 몇 개인가?

① 5 개 ② 6 개 ③ 7 개 ④ 8 개 <mark>⑤</mark> 9 개


- 해설 -1 이 대응할 수 있는 원소는 −1, 0, 1 의 3 가지 0 이 대응할 수 있는 원소는 −1, 0, 1 의 3 가지

0 이 대응할 수 있는 원소는 -1, 0, 1 의 3 가지 1 이 대응할 수 있는 원소는 -1 이 대응한 원소 1 가지 따라서, 주어진 조건을 만족시키는 함수 f 의 개수는 $3 \times 3 \times 1 = 9$ (개) 8. 집합 $X = \{1, 2, 3\}$ 에 대하여 함수 $f: X \to X$ 가 일대일 대응이고, $f \circ f = f$ 를 만족하는 함수는 모두 몇 개인가?

9. |y-1|=x+a 의 그래프와 y 축으로 둘러싸인 삼각형의 넓이가 4 일 때, 양수 a 의 값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ $\frac{1}{2}$

10. 함수 y = |x - 1| - |x - 2| 의 그래프와 직선 y = kx 가 세 점에서 만날 때, 상수 k 의 값이 될 수 없는 것은?

$$\frac{1}{2}$$

 $2\frac{1}{3}$ $3\frac{1}{4}$ $4\frac{1}{5}$

 $\bigcirc \frac{1}{6}$

해설
$$y = |x - 1| - |x|$$

$$y = |x - 1| - |x - 2|$$

(i)
$$x \ge 2$$
 일 때, $y = x - 1 - (x - 2) = 1$
(ii) $1 \le x < 2$ 일 때, $y = x - 1 + x - 2 = 2x - 3$

(iii) x < 1 일 때, y = -(x - 1) + (x - 2) = -1

$$y = |x - 1| - |x - 2|$$
 의 그래프는 다음의 그림과 같다. y^{\uparrow} $y = kx$

$$y = kx$$

$$1 - 2 x$$

$$-1 - 2 x$$

y = kx 의 그래프는 원점을 지나는 직선이므로 y = kx 의 그래 프가 점 (2, 1) 을 지날 때

$$1 = 2k \quad \therefore k = \frac{1}{2}$$

따라서 두 그래프가 세 점에서 만나기 위한 k 의 값의 범위는 $0 < k < \frac{1}{2}$ 이다.

그러므로 보기 중 위 범위에 속하지 않는 것은 ①이다.

11. N 을 자연수의 집합이라 할 때, 함수 $f: N \rightarrow N \cup \{0\}$ 이

(i) p 가 소수이면
$$f(p) = 1$$

(ii) $f(mn) = nf(m) + mf(n)$

을 만족시킨다고 한다. 이 때, $f(2^{2002})$ 의 값은?

① $2001 \cdot 2^{2001}$

해설

② $2001 \cdot 2^{2002}$

(3)2002 · 2²⁰⁰¹

 $\textcircled{4} \ 2002 \cdot 2^{2002} \qquad \qquad \textcircled{5} \ 2003 \cdot 2^{2001}$

$$f(mn) = nf(m) + mf(n)$$
 에서 양변을 mn 으로 나누면
$$\frac{f(mn)}{mn} = \frac{f(m)}{m} + \frac{f(n)}{n}$$

$$\frac{f(2^{2002})}{2^{2002}} = \frac{f(2)}{2} + \frac{f(2^{2001})}{2^{2001}}$$

$$= \frac{1}{2} + \left\{ \frac{f(2)}{2} + \frac{f(2^{2000})}{2^{2000}} \right\}$$

$$\vdots$$

$$= 2002 \cdot \frac{1}{2}$$

 $\therefore f(2^{2002}) = 2002 \cdot 2^{2001}$

12. 함수
$$y = f(x)$$
의 역함수를 $y = g(x)$ 라고 할 때, 다음 중 함수 $f(3x-2)$ 의 역함수는?

①
$$\frac{1}{3} \{g(x) + 2\}$$
 ② $\frac{1}{3} \{g(x) - 2\}$ ③ $3g(x) - 2$ ④ $3g(x) + 2$ ⑤ $\frac{1}{2} \{g(x) - 3\}$

$$y = f(3x - 2)$$
의 역함수

$$x = f(3y - 2)$$

$$\therefore 3y - 2 = f^{-1}(x) = g($$

$$y = f(3x - 2)$$
의 역함수를 구하기 위하여 x , y 를 바꾸면 $x = f(3y - 2)$
 $\therefore 3y - 2 = f^{-1}(x) = g(x)$
 $\therefore y = \frac{1}{3} \{g(x) + 2\}$