
다음 그림에서 $\cos x + \sin y$ 의 값을 구하여라.

① $\sqrt{2}$ ② $2\sqrt{2}$

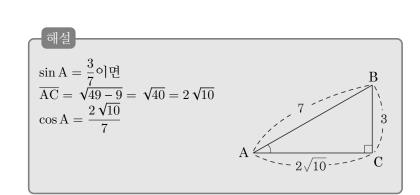
 $\bigcirc 3 \sqrt{3}$ $\bigcirc 4 2\sqrt{3}$ $\bigcirc 3 \sqrt{3}$

해설
$$\triangle ABC \hookrightarrow \triangle HBA \hookrightarrow \triangle HAC \circ | \Box \Xi$$

$$\angle ABH = y, \angle ACH = x$$

$$\overline{BC} = \sqrt{2^2 + (\sqrt{5})^2} = 3$$

$$\therefore \cos x + \cos y = \frac{\overline{AC}}{\overline{BC}} + \frac{\overline{AB}}{\overline{BC}}$$


$$= \frac{2}{3} + \frac{\sqrt{5}}{3}$$

$$= \frac{2 + \sqrt{5}}{3}$$

3. $0^{\circ} < A < 90^{\circ}$ 이고, $\sin A = \frac{3}{7}$ 일 때, $\cos A$ 의 값으로 적절한 것은?

①
$$\frac{\sqrt{10}}{7}$$
 ② $\frac{2\sqrt{10}}{7}$ ② $\frac{4\sqrt{10}}{7}$ ③ $\frac{5\sqrt{10}}{7}$

$$\frac{\sqrt[4]{10}}{\frac{7}{\sqrt{10}}}$$
 3 $\frac{3\sqrt[4]{10}}{7}$

다음 그림과 같은 한 변의 길이가 1 인 정육면체에서 $\angle AGE$ 가 x 일 때, $\sin x + \cos x$ 의 값이 $\frac{\sqrt{a} + \sqrt{b}}{c}$ 이다. a + b + c의 값을 구하시오.(단, a, b, c는 유리수)

4.

지급 =
$$\sqrt{3}$$

 $\overline{AG} = \sqrt{3}$
 $\overline{EG} = \sqrt{2}$
 $\overline{AE} = 1$ 이므로

$$\sin x + \cos x = \frac{1}{\sqrt{3}} + \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{3} + \sqrt{6}}{3}$$
따라서 $a + b + c = 12$ 이다.

다음 그림과 같이
$$3x - 2y + 1 = 0$$
 의 그래프
와 x 축의 양의 방향이 이루는 각의 크기를
 a 라 하자. 이 때, $\tan a$ 의 값을 구하면?
① $-\frac{3}{2}$ ② $-\frac{2}{2}$ ③ -1

①
$$-\frac{3}{2}$$
 ② $-\frac{2}{3}$ ③ -1 ④ $\frac{2}{3}$ ⑤ $\frac{3}{2}$

해설
$$\tan \theta = \frac{(높 \circ)}{(lled)} = \frac{(y \circ led)}{(x \circ led)} = |(led) \circ led) = |(led) \circ led)$$

3x-2y+1=0

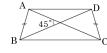
5.

$$3x - 2y + 1 = 0 \Rightarrow y = \frac{3}{2}x + \frac{1}{2}$$
이다.
따라서 $\tan a = \frac{3}{2}$ 이다.

6. 다음 삼각비의 값 중 가장 작은 값은?

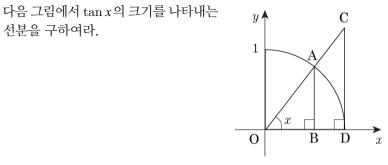
① sin 25 °

② cos 0°


③ cos 10 °

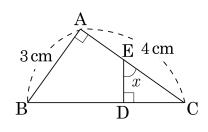
(4) tan 45°

⑤ tan 60 °


- ① sin 25° 와 ③ cos 10°
- $0^{\circ} \le x < 45^{\circ}$ 일 때, $\sin x < \cos x$
- 따라서 $\sin 25$ ° < $\cos 10$ ° < 1 ② $\cos 0$ ° = 1
- $2 \cos \theta = 1$
- $4 \tan 45^{\circ} = 1$
- ⑤ tan 60° = √3 따라서 가장 작은 값은 ① sin 25°

7. 다음 그림과 같이 두 대각선이 이루는 각의 크기가 45° 인 등변사다리 꼴 ABCD 의 넓이가 36 √2cm² 일 때, AC 의 길이를 구하면?

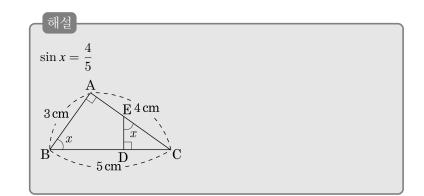
대설
$$\overline{AC} = \overline{BD} = x$$
 라면 $x \times x \times \frac{1}{2} \times \sin 45 = 36\sqrt{2}$ $x^2 \times \frac{1}{2} \times \frac{\sqrt{2}}{2} = 36\sqrt{2}$ $x^2 = 144$ $x = 12$ (cm)


선분을 구하여라.

해설

$$\tan x = \frac{\overline{\text{CD}}}{\overline{\text{OD}}} = \frac{\overline{\text{CD}}}{1} = \overline{\text{CD}}$$

9. 다음 그림에서 $\sin x$ 의 값은?



 $\bigcirc \frac{4}{5}$

 $2\frac{5}{3}$

 $3\frac{1}{4}$

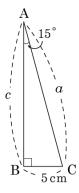
4

10. 다음 삼각비 표를 보고 $\cos 25^\circ + \sin 25^\circ \times \sin 50^\circ - \tan 50^\circ$ 의 값을 소수 둘째 자리까지 구하면?

각도	sin	cos	tan
$25\degree$	0.42	0.90	0.46
50°	0.76	0.64	1.19
70°	0.93	0.34	2.74

① 0.06 ② 0.05 ③ 0.04 ④ 0.03 ⑤ 0.02

$$\cos 25^{\circ} + \sin 25^{\circ} \times \sin 50^{\circ} - \tan 50^{\circ}$$


$$= 0.90 + 0.42 \times 0.76 - 1.19$$

$$= 0.90 + 0.3192 - 1.19$$

$$= 0.0292$$

≒ 0.03

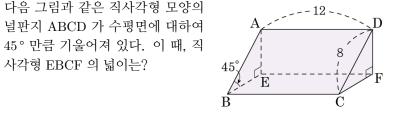
11. 다음 그림에서 13a + 13c 를 구하여라.

각도	sin	cos
74°	0.96	0.28
75°	0.96	0.26
76°	0.97	0.24

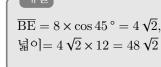
$$ightharpoonup$$
 정답: $13a + 13c = 490$

$$\angle C = 75^{\circ}$$
 이므로 $\cos 75^{\circ} = \frac{5}{a} = 0.26$, $\sin 75^{\circ} = \frac{c}{a} = 0.96$ 이므로 $a = \frac{500}{26} = \frac{250}{13}$, $c = \frac{250}{13} \times \frac{96}{100} = \frac{240}{13}$ 이 성립한다. 따라서 $13a + 13c = 250 + 240 = 490$ 이다.

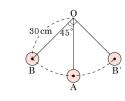
①
$$\frac{5}{2}$$
 ② $\frac{12}{5}$ ③ $\frac{12}{25}$ ④ $\frac{18}{25}$


$$\overline{AB}: \overline{AC}=4:5$$
 이므로 $\overline{AB}=4a, \ \overline{AC}=5a \ (a>0 \ \columnwidth \$

 $\therefore \sin A \times \cos A \times \tan A = \frac{3}{5} \times \frac{4}{5} \times \frac{3}{4} = \frac{9}{25}$

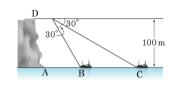

B
$$a (a > 0 인 상수)$$
 $\overline{(5a)^2 - (4a)^2} = 3a$

널판지 ABCD 가 수평면에 대하여 45° 만큼 기울어져 있다. 이 때. 직 사각형 EBCF 의 넓이는?

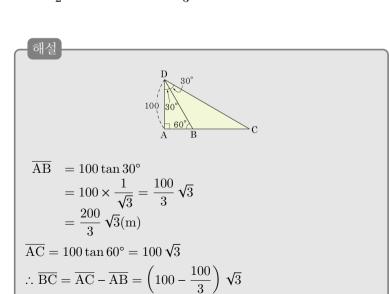

13.

① 48 ②
$$48\sqrt{2}$$
 ③ $48\sqrt{3}$ ④ $48\sqrt{5}$ ⑤ $48\sqrt{6}$

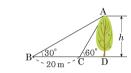
14. 다음 그림과 같이 시계의 추가 B 지점과 B' 지점 사이를 일정한 속도로 움직이고 있다. 추의 길이는 30cm 이고, ∠BOA = ∠AOB' = 45°, ∠BOB = 90° 이다. 추가 가장 높은 위치에 있을 때, 추는 A 지점을 기준으로 하여 몇 cm 의 높이에 있는가?


- ① $15(2 \sqrt{2})$ cm ② $20(2 \sqrt{2})$ cm ③ $25(2 \sqrt{2})$ cm
 - $4 \ 30(2 \sqrt{2})$ cm $5 \ 35(2 \sqrt{2})$ cm

점 B 에서 \overline{OA} 에 내린 수선의 발을 C 라 하면 $\cos 45^\circ = \frac{\overline{OC}}{\overline{OB}} = \frac{\overline{OC}}{30} = \frac{\sqrt{2}}{2}$, $\overline{OC} = 15\sqrt{2}\,\mathrm{cm}$ 이다. 따라서 $\overline{AC} = \overline{OA} - \overline{OC}$


$$= 30 - 15\sqrt{2}$$

 $=15(2-\sqrt{2})$ cm 이다.

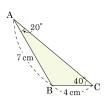

15. 높이 100m 인 절벽에서 배의 후미를 내려다 본 각의 크기는 60° 였다. 10 분 후 다시 배의 후미를 내려다보니, 내려다본 각의 크기는 30°이었다. 이 배가 10 분 동안 간 거리를 구하면?

①
$$50\sqrt{3}$$
 ② $\frac{125\sqrt{3}}{2}$ ③ $\frac{200\sqrt{3}}{3}$ ④ $\frac{175\sqrt{3}}{2}$ ⑤ $\frac{215\sqrt{3}}{3}$

16. 다음 그림에서 나무의 높이 h 를 구하여라. (단, $\sqrt{3} = 1.7$ 로 계산한 다.)

 \mathbf{m}

 $h = 20 \sin 60^{\circ} = 20 \times \frac{\sqrt{3}}{2} = 10 \sqrt{3} = 10 \times 1.7 = 17 \text{(m)}$

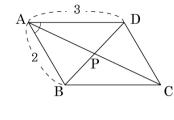

답: ▷ 정답:

 $17\,\mathrm{m}$

$$\angle BAC = 30^{\circ}$$
 이므로 $\overline{BC} = \overline{AC} = 20(m)$ $\triangle ACD$ 에서

 $\therefore h = 17 \text{m}$

17. 다음 삼각형의 넓이는?


 $17\sqrt{3}$ cm²

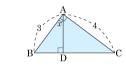
- $2 8\sqrt{3} \text{cm}^2$
- ⑤ $11\sqrt{3}$ cm²

(3) $9\sqrt{3}$ cm²

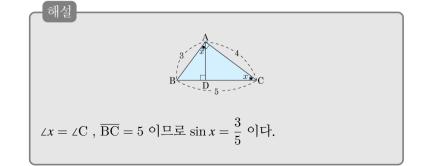
$$4 10 \sqrt{3} \text{cm}^2$$

 $\frac{1}{2} \times 4 \times 7 \times \sin 120^\circ = \frac{1}{2} \times 4 \times 7 \times \frac{\sqrt{3}}{2} = 7\sqrt{3}(\text{cm}^2) \text{ 이다.}$

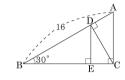
েত্রাপ্র


$$\Delta CPD = \frac{1}{4} \square ABCD$$

$$= \frac{1}{4} \times 2 \times 3 \times \sin 60^{\circ}$$


$$= \frac{1}{4} \times 2 \times 3 \times \frac{\sqrt{3}}{2}$$

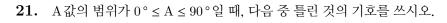
$$= \frac{3\sqrt{3}}{2}$$


19. 다음 그림과 같은 직각삼각형 ABC 에서 $\overline{AD} \bot \overline{BC}$, $\overline{AB} = 3 \text{cm}$, $\overline{AC} = 4 \text{cm}$ 일 때, $\sin x$ 의 값은?

①
$$\frac{3}{2}$$
 ② $\frac{1}{3}$ ③ $\frac{5}{3}$ ④ $\frac{3}{5}$ ⑤ $\frac{1}{2}$

20. 다음 그림과 같이 $\angle ACB = 90^\circ$ 인 직각 삼각형 ABC 가 있다. 꼭짓점 C 에서 변 AB 에 내린 수선의 발을 D , 점 D 에서 변 BC 에 내린 수선의 발을 E 라 한다. $\overline{AB} = 16$, $\angle ABC = 30^\circ$ 일 때, \overline{EC} 의 길이를 구하여라.

▶ 답:


$$\triangle ABC$$
 에서 $\sin 30^\circ = \frac{\overline{AC}}{16} = \frac{1}{2}$, 따라서 $\overline{AC} = 8$ 이다.

$$\triangle$$
ADC 에서 \angle ACD = 30°이므로 $\cos 30^\circ = \frac{\overline{CD}}{8} = \frac{\sqrt{3}}{2}$, 따라서

 $\overline{\mathrm{CD}} = 4\sqrt{3}$ 이다.

 $\triangle DEC$ 에서 $\angle CDE = 30$ °이므로 $\sin 30$ ° $= \frac{\overline{EC}}{4\sqrt{3}} = \frac{1}{2}$, 따라서

 $\overline{\mathrm{EC}} = 2\sqrt{3}$ 이다.

- ① cos A 의 최댓값은 1이다.
- © A의 값이 감소할 때, tan A의 값은 감소하다 증가한다.
- © sin A 의 값과 cos A 의 값이 같아지는 경우는 A 가 45° 일 때이다.
- ② A의 값이 증가할 때, sin A의 값은 증가한다.
- □ tan A 의 최댓값은 존재하지 않는다.
- ▶ 답:
- ▷ 정답: □

해설

A의 값이 감소하면, tan A의 값은 감소한다.

22. x 에 관한 이차방정식 $2x^2 - 11x + a = 0$ 의 한 근이 $\sin 90^\circ + \cos 0^\circ$ 일 때, a 의 값을 구하면?

해설
이차방정식
$$2x^2 - 11x + a = 0$$
 에 $x = 2$ 를 대입하면, $2 \times 2^2 - 11 \times 2 + a = 0$
 $8 - 22 + a = 0$, $a = 14$

23. $0^{\circ} < A < 60^{\circ}$ 일 때, $\sqrt{\left(\frac{1}{2} - \cos A\right)^2 - \sqrt{(\cos A + \sin 30^{\circ})^2}}$ 의 값을

구하면?

(4) 0

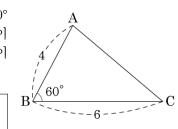
①
$$2\sin A$$

$$2 \frac{1}{2} \sin A$$

$$0^{\circ} < A < 60^{\circ}$$
 의 범위에서 $\cos A$ 의 범위는 $\frac{1}{2} < \cos A < 1$ 이므로

$$\frac{1}{2} - \cos A < 0$$
이다.

$$\sqrt{\left(\frac{1}{2} - \cos A\right)^2} - \sqrt{(\cos A + \sin 30^\circ)^2}$$


$$A - (\cos A + \sin 30^\circ)$$

$$= -\left(\frac{1}{2} - \cos A\right) - (\cos A + \sin 30^\circ)$$
$$= -\frac{1}{2} + \cos A - \cos A - \sin 30^\circ$$

$$= -\frac{1}{2} - \sin 30^{\circ}$$

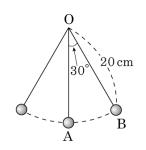
$$= -\frac{1}{2} - \frac{1}{2} = -1 \left(\because \sin 30^{\circ} = \frac{1}{2} \right)$$

점 A 에서 \overline{BC} 에 내린 수선의 발을 H 라 하면 $\overline{AH} = 4 \times \boxed{(7)} = 4 \times \boxed{(4)}$ $= 2\sqrt{3}$ $\overline{BH} = 4 \times \boxed{(4)} = 4 \times \boxed{(4)}$ = 2, $\overline{CH} = 6 - 2 = 4$ $\therefore \overline{AC} = \sqrt{\boxed{(4)}}^2 + 4^2 = 2\sqrt{7}$

(다)tan 60°

① (7)sin 60°

④ (라) $\frac{1}{9}$

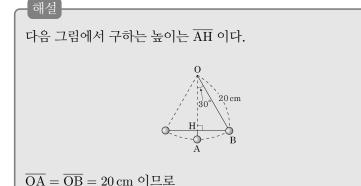

(다)에 cos 60° 가 들어가야 한다.

점 A 에서
$$\overline{BC}$$
에 내린 수선의 발을 H 라 하면 $\overline{AH}=4\times\sin60^\circ=4\times\frac{\sqrt{3}}{2}=2\,\sqrt{3}$ $\overline{BH}=4\times\cos60^\circ=4\times\frac{1}{2}=2,\;\overline{CH}=6-2=4$ $\therefore\;\overline{AC}=\sqrt{(2\,\sqrt{3})^2+4^2}=2\,\sqrt{7}$

② (나) $\frac{\sqrt{3}}{2}$

⑤ (마) $2\sqrt{3}$

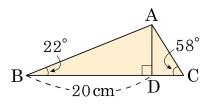
25. 다음 그림과 같이 실의 길이가 $20 \, \mathrm{cm}$ 인 추가 있다. ∠AOB = 30°일 때, 이 추가 A 를 기 준으로 몇 cm 의 높이에 있는지 구하면?


(1) $(20 - 10\sqrt{3})$ cm

③ $(20-5\sqrt{3})$ cm

② $(20-10\sqrt{2})$ cm

(4) $(20 - \sqrt{3}0 \text{ cm})$


⑤ 5 cm

 $\overline{AH} = \overline{OA} - \overline{OH} = 20 - 20 \cos 30^{\circ}$

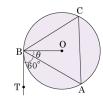
 $=20-20 \times \frac{\sqrt{3}}{2} = 20-10\sqrt{3}$ (cm)

26. 다음 그림에서 \triangle ABC 의 넓이를 구하여라.(단, 단위는 생략한다.)

x	sin	cos	tan
22°	0.37	0.93	0.40
58°	0.85	0.53	1.60

▶ 답:

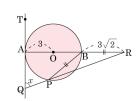
➢ 정답: 100


해설

 $\triangle ABD \quad \forall |A| \quad \overline{AD} = \overline{BD} \tan B = 20 \tan 22^{\circ} = 20 \times 0.40 = 8 \text{ (cm)}$

 $\triangle ACD$ 에서 $\overline{CD} = \frac{\overline{AD}}{\tan 58^{\circ}} = \frac{8}{1.6} = 5 \text{ (cm)}$ 이다.

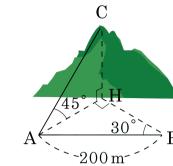
따라서 $\triangle ABC = \frac{1}{2} \times (20 + 5) \times 8 = 100 (\text{cm}^2)$ 이다.


27. 다음 그림과 같이 원 O 에 내접하는 \triangle ABC 가 있다. 원 위의 점 B 에서 접선 \overline{BT} 를 그을 때 생기는 \angle ABT 의 값이 60° 일 때, \angle OBA 를 θ 라고 하면 $(\cos\theta + \sin C) \times \tan C = a$ 이다. a 의 값을 구하여라.

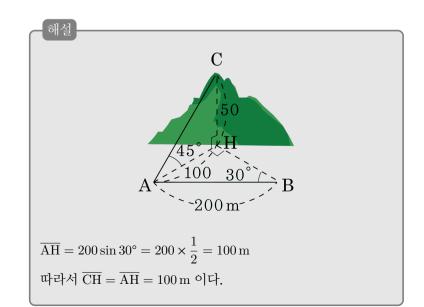
해설
$$\angle ABT = 60^{\circ}$$
 이므로 $\angle BC = A60^{\circ}$, $\angle OBA = \theta = 30^{\circ}$ (∵ 5.0ptBC 의 원주각) $(\widetilde{\mathcal{C}}\mathcal{A}) = \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}\right) \times \sqrt{3} = 3$ 이다.

따라서 a=3 이다.

28. 다음 그림과 같이 원 O 의 지름의 한 끝점 A 에서 접선인 \overrightarrow{AT} 를 긋고, 원과 지름 AB 의 연장선 위에 $\overrightarrow{BP} = \overrightarrow{BR}$ 이 되도록 점 P,R 을 잡아 \overrightarrow{AT} 와 \overrightarrow{RP} 의 연장선이 만나는 점을 Q 라 하자. $\overrightarrow{AO} = 3$, $\overrightarrow{BR} = 3\sqrt{2}$, $\angle AQP = x$ 일 때, $\tan x$ 의 값을 구하여라.


▶ 답:

$$ightharpoonup$$
 정답: $\sqrt{2}+1$


$$\angle APB = 90^{\circ} \angle RAQ = 90^{\circ}$$

 $\angle AQR + \angle ARQ = 90^{\circ}$
 $\angle APQ + \angle BPR = 90^{\circ}$

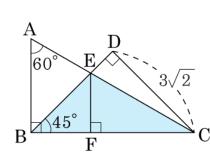
$$\tan x = \frac{\overline{AR}}{\overline{AQ}} = \frac{6+3\sqrt{2}}{3\sqrt{2}} = \sqrt{2}+1$$

29. 산의 높이 $\overline{\text{CH}}$ 를 구하기 위하여 산 아래쪽의 수평면 위에 $\overline{\text{AB}}$ = 200m 가 되도록 두 점 A, B 를 잡고 측량하였더니 다음 그림과 같았다. 이 때, 산의 높이 $\overline{\text{CH}}$ 의 길이는?

30. 삼각형 ABC 에서 $\overline{BC} = a$, $\overline{AC} = b$, $\overline{AB} = c$ 일 때, a(a-c)(a+c) + b(b-c)(b+c) = 0 이 성립할 때, $\tan C$ 의 값을 구하여라.

$$a(a-c)(a+c) + b(b-c)(b+c) = 0$$

$$a^3 + b^3 - c^2(a+b) = 0$$


$$(a+b)(a^2 - ab + b^2 - c^2) = 0$$

그런데
$$a+b\neq 0$$
 이므로 $a^2-ab+b^2-c^2=0$ 제이코사인법칙에 의해 $c^2=a^2+b^2-2ab\cos C$

두 식을 더하면
$$ab = 2ab \cos C$$
 이므로 $\cos C = \frac{1}{2}$

$$\therefore \tan C = \sqrt{3}$$

 $\angle DBC = 45^\circ$, $\angle BAC = 60^\circ$ 이고, $\overline{DC} = 3\sqrt{2} \mathrm{cm}$ 일 때, 겹쳐진 부분인 $\triangle EBC$ 의 넓이는?

①
$$6(\sqrt{3}-1)\text{cm}^2$$

②
$$6(\sqrt{3}+1)\text{cm}^2$$

$$39(\sqrt{3}-1)\text{cm}^2$$

$$4 27(\sqrt{3}-1)\text{cm}^2$$

$$3 12(\sqrt{3}-1)$$
cm²

$$\Delta \mathrm{DBC}$$
 에서 $\overline{\mathrm{BC}} = \sqrt{(3\sqrt{2})^2 + (3\sqrt{2})^2} = 6(\mathrm{cm})$

$$\triangle$$
EBC 에서 $\overline{EF} = x$ 라 하면

$$\overline{BF} = \overline{EF} = x, \ \overline{FC} = \frac{\overline{EF}}{\tan 30^{\circ}} = \sqrt{3}x$$

 $\overline{BC} = \overline{BF} + \overline{FC}$ 에서 $6 = x + \sqrt{3}x$ $x = \frac{6}{2} = 3(\sqrt{3} - 1)$

$$x = \frac{6}{\sqrt{3} + 1} = 3(\sqrt{3} - 1)$$

 $\Delta EBC = \frac{1}{2} \times \overline{BC} \times \overline{EF} = \frac{1}{2} \times 6 \times 3(\sqrt{3} - 1) = 9(\sqrt{3} - 1)(\text{ cm}^2)$

32. 다음 사각형의 넓이를 구하여라.

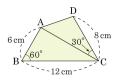
A D
10 cm
60°
60°
C

$$ightharpoonup$$
 정답: $55\sqrt{3}$ cm^2

해설
$$(달)$$

$$= 10 \times 6 \times \sin 60^{\circ} + \frac{1}{2} \times 10 \times 10 \times 10^{\circ}$$

$$\sin 60^{\circ}$$


$$= 10 \times 6 \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times 10 \times 10 \times \frac{\sqrt{3}}{2}$$

$$= 30 \sqrt{3} + 25 \sqrt{3}$$

$$= 55 \sqrt{3} \text{ (cm}^{2})$$

 cm^2

33. 다음 그림에서 □ABCD 의 넓이는?

① $18\sqrt{3}$ cm²

- ② $21\sqrt{3}$ cm²
- $3 25 \sqrt{3} \text{cm}^2$

- ④ $27\sqrt{3}$ cm²
- $\boxed{3} 30 \sqrt{3} \text{cm}^2$

해설

 $\square ABCD$ 의 넓이 $= \triangle ABC$ 의 넓이 $+ \triangle ACD$ 의 넓이

 $\triangle ABC = \frac{1}{2} \times 6 \times 12 \times \sin 60^{\circ} = 18\sqrt{3} (\text{cm}^{2})$

 $\overline{AC} = 12 \sin 60^{\circ} = 6 \sqrt{3} (\text{cm}^2)$

 $\triangle ACD = \frac{1}{2} \times 6\sqrt{3} \times 8 \times \sin 30^{\circ} = 12\sqrt{3} (\text{cm}^{2})$

 \square ABCD 의 넓이= $18\sqrt{3} + 12\sqrt{3} = 30\sqrt{3}$ (cm²)