.
$$x$$
에 대한 이차방정식 $2mx^2 + (5m+2)x + 4m + 1 = 0$ 이 중근을 갖도록 하는 실수 m 의 값은?

①
$$-\frac{3}{2}$$
, -2 ② $-\frac{7}{12}$, $-\frac{1}{2}$ ③ $-\frac{7}{2}$, 2
② $-\frac{7}{2}$, $\frac{3}{2}$

주어진 이차방정식의 판별식을
$$D$$
라고 하면 중근을 가질 조건은 $D=0$ 이므로
$$D=(5m+2)^2-4\cdot 2m\cdot (4m+1)=0$$

$$25m^2+20m+4-32m^2-8m=0$$

$$7m^2-12m-4=0$$

(7m+2)(m-2)=0

 $\therefore m = -\frac{2}{7}$ 또는 2

2. 부등식 $x^2 - kx + 2 > 0$ 이 항상 성립하도록 하는 상수 k의 범위를 구하면 a < k < b이다. 이 때, ab의 값은?

$$x^2 - kx + 2 > 0$$
이 항상 성립하려면
판별식이 실근을 갖지 않을 때이므로

$$k^2 - 8 < 0, (k - 2\sqrt{2})(k + 2\sqrt{2}) < 0$$

 $\therefore -2\sqrt{2} < k < 2\sqrt{2}$

 $D = k^2 - 4 \cdot 2 < 0$

$$\therefore -2\sqrt{2} < k < 2\sqrt{2}$$

따라서 $a = -2\sqrt{2}, b = 2\sqrt{2}$ 이므로
 $ab = -2\sqrt{2} \times 2\sqrt{2} = -8$

3. 직선
$$x+2y+3=0$$
 과 수직이고 점 $(2, 0)$ 을 지나는 직선의 방정식을 구하면?

$$(1) 2x - y - 4 = 0$$

$$2 x - 2y - 4 = 0$$

$$3x - 2y - 4 = 0$$

$$3x - 2y - 4 =$$

3 2x - 3y - 4 = 0

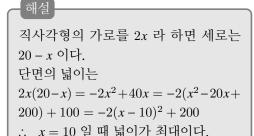
$$y = -\frac{1}{2}x - \frac{3}{2}$$
 에 수직이므로, 기울기은 2

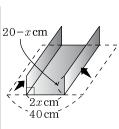
$$\Rightarrow y = 2(x-2)$$

$$\Rightarrow y = 2x - 4$$

(4) 3x - y - 4 = 0

1. $1-4x^2-y^2+4xy=(1+ax+by)(1+cx+dy)$ 일 때, ac+bd의 값을 구하면?


①
$$-6$$
 ② -5 ③ -4 ④ -3 ⑤ -2


(준식) =
$$1 - (4x^2 - 4xy + y^2)$$

= $1^2 - (2x - y)^2$
= $(1 + 2x - y)(1 - 2x + y)$
 $\therefore a = 2, b = -1, c = -2, d = 1$
 $\therefore ac + bd = 2 \times (-2) + (-1) \times 1 = -5$

5. a, b, c가 삼각형의 세 변의 길이를 나타낼 때, $a^2(b-c) + b^2(c-a) + c^2(a-b) = 0$ 을 만족하는 삼각형 ABC는 어떤 삼각형인가?

6. 너비가 $40 \, \mathrm{cm}$ 인 철판의 양쪽을 접어 단면이 직사각형인 물받이를 만들려고 한다. 단면의 넓이가 최대가 될 때, 높이를 구하면?

①10 ② 8 ③ 6 ④ 4 ④ 3 2

점 P(a, b)가 직선 y = -x + 2 위를 움직일 때 점 Q(a - b, a + b)의 자취가 나타내는 도형의 방정식을 구하면?

①
$$x = 1$$
 ② $y = 2$ ③ $x + y = 2$

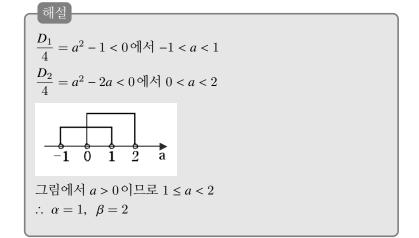
7.

해설

$$P(a, b)$$
가 $y = -x + 2$ 위의 점이므로
 $b = -a + 2 \cdots$ ①
 $Q(a - b, a + b) = (x, y)$ 라 하면,
 $a - b = x \cdot a + b = y$

$$\therefore a = \frac{x+y}{2}, b = \frac{y-x}{2}$$
 ① 에 대입하면 $\frac{y-x}{2} = -\frac{x+y}{2} + 2$

$$\therefore y - x = -(x + y) + 4$$
$$\therefore y = 2$$


8. $x^2 - 2ax + 1 = 0$, $x^2 - 2ax + 2a = 0$ 중에서 한 개의 방정식만 허근을 갖도록 양수 a의 범위를 정할 때, $\alpha \le a < \beta$ 이다. 이때 $\alpha + \beta$ 의 값을 구하면?

① 1

② 2

9) 3

9. 중심이 직선
$$2x+y=0$$
 위에 있고, 두 점 $(3, 0), (0, 1)$ 을 지나는 원의 방정식은 ?

①
$$x^2 + y^2 - 2x + 4y - 6 = 0$$

② $x^2 + y^2 + 2x - 4y - 6 = 0$

$$2x^{2} + y^{2} + 2x - 4y - 6 = 0$$

$$35x^{2} + 5y^{2} - 8x + 16y - 21 = 0$$

$$4 5x^2 + 5y^2 + 8x - 16y - 21 = 0$$

구하는 원의 중심이 직선 2x + y = 0 위에 있으므로 중심을 (a, -2a) 라 할 수 있다. $(x-a)^2 + (y+2a)^2 = r^2$

점
$$(3, 0)$$
을 지나므로, $(3-a)^2 + (2a)^2 = r^2 \cdots ①$

또, 점 (0, 1)을 지나므로, $a^2 + (1 + 2a)^2 = r^2 \cdots ②$

$$a^2 + (1+2a)^2 = r^2 \cdots (2)$$
①, ②에서 $a = \frac{4}{5}$, $r^2 = \frac{37}{5}$

 $\therefore \left(x - \frac{4}{5}\right)^2 + \left(y + \frac{8}{5}\right)^2 = \frac{37}{5}$ 정리하면 $5x^2 + 5y^2 - 8x + 16y - 21 = 0$ **10.** 두 점 A(-8, -2), B(2, 8) 에 대하여 원 $x^2 + y^2 = 27$ 위를 움직이는 점을 P 라고 할 때, \triangle ABC 의 무게 중심 G 는 어떻게 움직이는가?

①
$$(x+1)^2 + (y-1)^2 = 1$$
 ② $(x+1)^2 + (y-1)^2 = 2$
③ $(x+2)^2 + (y+1)^2 = 2$ ④ $(x+2)^2 + (y-2)^2 = 3$

$$(3) (x+2)^2 + (y+1)^2 = 2$$

$$(4) (x+2)^2 + (y-2)^2 = 3$$

$$(5) (x+1)^2 + (y-1)^2 = 4$$

P(a, b)
$$a^2 + b^2 = 27$$

무계중심 G(x,y) = $\left(\frac{-8+2+a}{3}, \frac{-2+8+b}{3}\right)$

$$= \left(\frac{a-6}{3}, \frac{b+6}{3}\right)$$

$$X = \frac{a-6}{3}, \ Y = \frac{b+6}{3}$$

$$a = 3X + 6, b = 3Y - 6 a^2 + b^2 = 27 에 대입하면,$$
$$(3X + 6)^2 + (3Y - 6)^2 = 27$$

$$(3X + 6)^2 + (3Y - 6)^2 = 23$$

$$\therefore (X + 2)^2 + (Y - 2)^2 = 3$$

따라서 G(X, Y) 의 자취는 $(x+2)^2 + (y-2)^2 = 3$