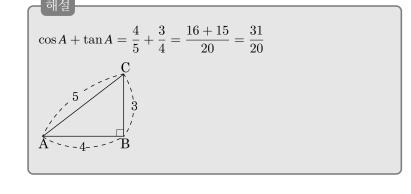
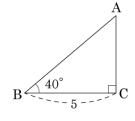

$\sin A = \frac{\sqrt{2}}{2}$ 인 직각삼각형 ABC 에서 $\cos A$, $\tan A$ 의 값을 각각 구하면? (단, 0° < A < 90°)

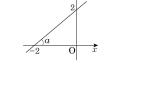


- ① $\cos A = \frac{\sqrt{3}}{2}$, $\tan A = 1$ ② $\cos A = \frac{\sqrt{2}}{2}$, $\tan A = 2$ ③ $\cos A = 2\sqrt{3}$, $\tan A = 1$ ④ $\cos A = 3\sqrt{3}$, $\tan A = \frac{1}{2}$ ⑤ $\cos A = \frac{\sqrt{2}}{2}$, $\tan A = 1$


 $\sin A = \frac{\overline{BC}}{\overline{AB}} = \frac{\sqrt{2}}{2}$ 이므로 $\overline{BC} = \overline{AB} \times \sin A = 6 \times \frac{\sqrt{2}}{2} = 3\sqrt{2}$ 피타고라스 정리에 의해 $\overline{\mathrm{AC}}=\sqrt{6^2-(3\,\sqrt{2})^2}=3\,\sqrt{2}$ 이다.

따라서 $\cos A = \frac{3\sqrt{2}}{6} = \frac{\sqrt{2}}{2}$, $\tan A = \frac{\sin A}{\cos A} = \frac{3\sqrt{2}}{3\sqrt{2}} = 1$ 이다.

- **2.** $\sin A = \frac{3}{5}$ 일 때, $\cos A + \tan A$ 의 값은? (단, $0^{\circ} \le A \le 90^{\circ}$)
 - ① $\frac{5}{3}$ ② $\frac{12}{5}$ ③ $\frac{23}{12}$ ④ $\frac{31}{20}$ ⑤ $\frac{39}{28}$


3. 다음 그림과 같이 ∠C = 90° 인 직각삼각형 ABC 에서 $\overline{\mathrm{AC}}$ 의 길이를 구하는 식은?

- ① $5\sin 40^{\circ}$ (4) 5 tan 40° (5) 5 cos 40°
- $3 \frac{5}{\tan 40^{\circ}}$

 $\tan 40^{\circ} = \frac{\overline{AC}}{\overline{BC}} = \frac{\overline{AC}}{5} \text{ or}.$ 따라서 $\overline{AC} = 5 \tan 40$ ° 이다.

4. 다음 그래프를 보고 직선의 기울기의 값을 x, a 의 크기를 y° 라 할 때, x+y 의 값을 구하면?

① 16 ② 31 ③ 46 ④ 61 ⑤ 91

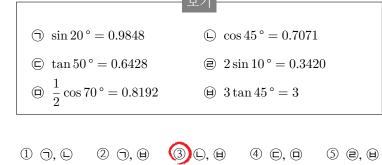
(직선의 기울기) $=\frac{2}{2}=1$ $\tan a = 1$

 $\therefore a = 45^{\circ}$

따라서 x + y = 1 + 45 = 46 이다.

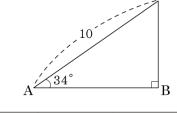
- 5. 다음 중 삼각비의 값의 대소 관계로 옳지 <u>않은</u> 것을 모두 고르면?
- $3\sin 40^{\circ} > \cos 20^{\circ}$
- $(5) \sin 75^{\circ} > \cos 75^{\circ}$

해설 ③ 0° < r < 45° 이


③ $0^{\circ} \le x < 45^{\circ}$ 인 범위에서는, $\sin x < \cos x$ 이므로 $\therefore \sin 40^{\circ} < \cos 20^{\circ}$

④ $0^{\circ} \le x \le 90^{\circ}$ 인 범위에서는 x 의 값이 증가하면 $\cos x$ 의

값은 1 에서 0 까지 감소한다. ∴ cos 10° > cos 80°


6. 다음 표는 삼각비의 값을 소수 넷째 자리까지 나타낸 것이다. 삼각비의 값을 바르게 나타낸 것을 보기에서 모두 고르면?

각도	sin	cos	tan
10°	0.1736	0.9848	0.1763
20°	0.3420	0.9397	0.3640
$35\degree$	0.5736	0.8192	0.7002
$45\degree$	0.7071	0.7071	1.0000
50°	0.7660	0.6428	1.1918
70°	0.9397	0.3420	2.7475
89°	0.9998	0.0175	57.2900

7. 다음 그림의 $\triangle ABC$ 에서 삼각비의 표를 보고, $\triangle ABC$ 의 둘레의 길이를 구하면?

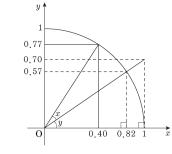
각도	sın	cos	tan
54°	0.8090	0.5878	1.3764
55°	0.8192	0.5736	1.4281
56°	0.8290	0.5592	1.4826

4 23.882

① 5.592

⑤ 29.107

③ 13.882


② 8.29

 $\overline{AB} = 10 \times \sin 56^\circ = 10 \times 0.829 = 8.29$ $\overline{BC} = 10 \times \cos 56^{\circ} = 10 \times 0.5592 = 5.592$

따라서 \triangle ABC 의 둘레의 길이는 10 + 8.29 + 5.592 = 23.882

이다.

8. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 다음 중 <u>틀린</u> 것은?

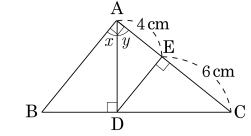
 $\Im \cos y = 0.82$

- $\sin y = 0.82$ $4 \cos(x+y) = 0.40$

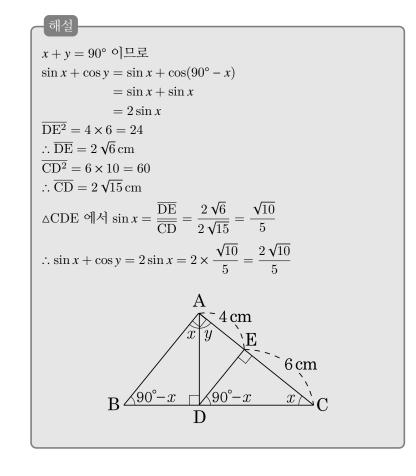
 $2\sin y = 0.57$

- $45\,^\circ \le A \le 90\,^\circ$ 일 때, $\sqrt{(\sin A \cos A)^2} \sqrt{(\sin A \cos A)^2}$ 을 간단 9. 히 하면?
 - ① $2\sqrt{3}$ ② $\sqrt{3}$ ③ $2\sqrt{2}$ ④ $\sqrt{2}$

- **⑤**0


 $45\,^{\circ} \leq A \leq 90\,^{\circ}$ 일 때 $\sin A \geq \cos A$ 이므로

해설


 $(\sin A - \cos A) - (\sin A - \cos A)$

 $= \sin A - \cos A - \sin A + \cos A = 0$

10. 다음 그림과 같이 $\angle A$ 가 직각인 $\triangle ABC$ 의 꼭짓점 A 에서 변 BC 에 내린 수선의 발을 D 라 하고, D 에서 변 AC 에 내린 수선의 발을 E 라 한다. $\overline{AE} = 4 \mathrm{cm}, \ \overline{CE} = 6 \mathrm{cm}$ 이고, $\angle BAD = x, \angle CAD = y$ 일 때, $\sin x + \cos y$ 의 값은?

- 5

